Artificial General Intelligence
Artificial basic intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or exceeds human cognitive abilities throughout a vast array of cognitive tasks. This contrasts with narrow AI, which is limited to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that significantly goes beyond human cognitive capabilities. AGI is thought about one of the meanings of strong AI.
Creating AGI is a main objective of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 survey determined 72 active AGI research study and advancement jobs throughout 37 countries. [4]
The timeline for attaining AGI stays a subject of ongoing debate among researchers and specialists. Since 2023, some argue that it may be possible in years or years; others maintain it might take a century or longer; a minority believe it might never be attained; and another minority declares that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed issues about the quick development towards AGI, recommending it might be accomplished sooner than lots of anticipate. [7]
There is debate on the precise definition of AGI and relating to whether modern-day large language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common subject in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many professionals on AI have actually specified that reducing the threat of human extinction positioned by AGI should be a worldwide priority. [14] [15] Others find the advancement of AGI to be too remote to provide such a risk. [16] [17]
Terminology
AGI is likewise known as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]
Some academic sources book the term "strong AI" for computer system programs that experience life or awareness. [a] In contrast, weak AI (or narrow AI) is able to fix one specific issue but lacks basic cognitive capabilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as people. [a]
Related ideas include synthetic superintelligence and users.atw.hu transformative AI. An artificial superintelligence (ASI) is a theoretical type of AGI that is far more usually smart than humans, [23] while the notion of transformative AI connects to AI having a large effect on society, for instance, similar to the farming or commercial revolution. [24]
A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They define 5 levels of AGI: emerging, skilled, specialist, virtuoso, and superhuman. For example, a skilled AGI is defined as an AI that exceeds 50% of competent adults in a wide variety of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is likewise specified however with a threshold of 100%. They think about big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. Among the leading propositions is the Turing test. However, there are other well-known definitions, and some researchers disagree with the more popular techniques. [b]
Intelligence characteristics
Researchers typically hold that intelligence is needed to do all of the following: [27]
reason, use strategy, solve puzzles, and make judgments under unpredictability
represent knowledge, consisting of sound judgment knowledge
strategy
discover
- communicate in natural language
- if essential, incorporate these skills in completion of any given objective
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) think about extra qualities such as imagination (the capability to form novel psychological images and principles) [28] and autonomy. [29]
Computer-based systems that display a number of these capabilities exist (e.g. see computational imagination, automated thinking, choice support system, robotic, evolutionary computation, smart agent). There is argument about whether contemporary AI systems possess them to an adequate degree.
Physical qualities
Other capabilities are considered preferable in smart systems, as they might affect intelligence or aid in its expression. These include: [30]
- the capability to sense (e.g. see, hear, etc), and - the ability to act (e.g. relocation and control objects, modification location to check out, etc).
This includes the ability to and react to threat. [31]
Although the ability to sense (e.g. see, hear, etc) and the ability to act (e.g. move and manipulate items, change location to check out, etc) can be desirable for some smart systems, [30] these physical abilities are not strictly required for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) might already be or end up being AGI. Even from a less optimistic viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like form; being a silicon-based computational system is enough, provided it can process input (language) from the external world in location of human senses. This analysis lines up with the understanding that AGI has actually never been proscribed a specific physical embodiment and hence does not demand a capacity for locomotion or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to verify human-level AGI have been thought about, including: [33] [34]
The idea of the test is that the machine has to attempt and pretend to be a man, by responding to concerns put to it, and it will only pass if the pretence is fairly convincing. A considerable part of a jury, gdprhub.eu who should not be skilled about machines, should be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to fix it, one would require to execute AGI, since the service is beyond the abilities of a purpose-specific algorithm. [47]
There are many problems that have actually been conjectured to need general intelligence to fix along with human beings. Examples consist of computer system vision, natural language understanding, and dealing with unforeseen situations while resolving any real-world problem. [48] Even a specific task like translation needs a machine to check out and write in both languages, follow the author's argument (reason), understand the context (understanding), and faithfully replicate the author's initial intent (social intelligence). All of these problems need to be resolved all at once in order to reach human-level device performance.
However, much of these tasks can now be carried out by modern big language models. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on many standards for reading understanding and visual thinking. [49]
History
Classical AI
Modern AI research study began in the mid-1950s. [50] The first generation of AI researchers were persuaded that artificial basic intelligence was possible and that it would exist in just a few years. [51] AI pioneer Herbert A. Simon wrote in 1965: "makers will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers believed they could create by the year 2001. AI leader Marvin Minsky was an expert [53] on the task of making HAL 9000 as sensible as possible according to the agreement forecasts of the time. He stated in 1967, "Within a generation ... the issue of producing 'expert system' will substantially be solved". [54]
Several classical AI tasks, oke.zone such as Doug Lenat's Cyc job (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it ended up being apparent that researchers had actually grossly ignored the difficulty of the task. Funding firms ended up being hesitant of AGI and put scientists under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a casual conversation". [58] In response to this and the success of specialist systems, both industry and federal government pumped cash into the field. [56] [59] However, self-confidence in AI stunningly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever fulfilled. [60] For the 2nd time in 20 years, AI researchers who predicted the impending achievement of AGI had been mistaken. By the 1990s, AI scientists had a reputation for making vain pledges. They became unwilling to make forecasts at all [d] and avoided mention of "human level" expert system for fear of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI attained commercial success and academic respectability by focusing on specific sub-problems where AI can produce proven results and commercial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the technology industry, and research study in this vein is greatly moneyed in both academia and industry. As of 2018 [update], development in this field was considered an emerging pattern, and a fully grown phase was expected to be reached in more than 10 years. [64]
At the turn of the century, numerous mainstream AI scientists [65] hoped that strong AI might be established by combining programs that solve various sub-problems. Hans Moravec wrote in 1988:
I am confident that this bottom-up route to expert system will one day fulfill the traditional top-down route majority method, all set to supply the real-world proficiency and the commonsense understanding that has been so frustratingly elusive in reasoning programs. Fully smart devices will result when the metaphorical golden spike is driven unifying the two efforts. [65]
However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:
The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way satisfy "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper are valid, then this expectation is hopelessly modular and there is actually just one practical route from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we need to even try to reach such a level, considering that it appears arriving would just total up to uprooting our signs from their intrinsic significances (consequently simply decreasing ourselves to the practical equivalent of a programmable computer system). [66]
Modern synthetic general intelligence research study
The term "synthetic general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the ability to satisfy objectives in a broad range of environments". [68] This kind of AGI, characterized by the capability to maximise a mathematical meaning of intelligence rather than exhibit human-like behaviour, [69] was likewise called universal artificial intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and featuring a variety of visitor lecturers.
As of 2023 [upgrade], a small number of computer system researchers are active in AGI research, and numerous add to a series of AGI conferences. However, increasingly more scientists have an interest in open-ended knowing, [76] [77] which is the idea of enabling AI to continually find out and innovate like humans do.
Feasibility
As of 2023, the development and potential achievement of AGI remains a topic of intense debate within the AI neighborhood. While conventional consensus held that AGI was a distant goal, recent advancements have led some researchers and market figures to declare that early forms of AGI may currently exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "machines will be capable, within twenty years, of doing any work a male can do". This prediction stopped working to come real. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century since it would require "unforeseeable and basically unforeseeable breakthroughs" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between contemporary computing and human-level artificial intelligence is as wide as the gulf between existing space flight and useful faster-than-light spaceflight. [80]
An additional challenge is the absence of clearness in specifying what intelligence requires. Does it require awareness? Must it display the ability to set goals along with pursue them? Is it purely a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are centers such as planning, reasoning, and causal understanding required? Does intelligence need clearly replicating the brain and its specific professors? Does it require emotions? [81]
Most AI scientists believe strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of achieving strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, however that the present level of progress is such that a date can not precisely be anticipated. [84] AI professionals' views on the expediency of AGI wax and subside. Four surveys performed in 2012 and 2013 recommended that the mean quote amongst experts for when they would be 50% confident AGI would get here was 2040 to 2050, depending on the poll, with the mean being 2081. Of the professionals, 16.5% answered with "never" when asked the exact same concern but with a 90% confidence rather. [85] [86] Further current AGI development factors to consider can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong predisposition towards anticipating the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They analyzed 95 predictions made in between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers published a detailed examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we think that it could fairly be deemed an early (yet still insufficient) variation of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 exceeds 99% of humans on the Torrance tests of imaginative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of general intelligence has actually already been achieved with frontier models. They composed that hesitation to this view comes from 4 primary factors: a "healthy hesitation about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "commitment to human (or biological) exceptionalism", or a "issue about the economic implications of AGI". [91]
2023 also marked the development of large multimodal designs (large language models capable of processing or creating multiple methods such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of designs that "invest more time believing before they react". According to Mira Murati, this capability to believe before responding represents a brand-new, extra paradigm. It enhances model outputs by investing more computing power when creating the response, whereas the model scaling paradigm enhances outputs by increasing the model size, training information and training calculate power. [93] [94]
An OpenAI worker, Vahid Kazemi, claimed in 2024 that the company had actually achieved AGI, mentioning, "In my opinion, we have already accomplished AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "better than a lot of people at a lot of tasks." He likewise dealt with criticisms that large language models (LLMs) simply follow predefined patterns, comparing their learning process to the clinical method of observing, assuming, and confirming. These statements have stimulated dispute, as they depend on a broad and unconventional meaning of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs show impressive versatility, they may not completely meet this requirement. Notably, Kazemi's comments came shortly after OpenAI removed "AGI" from the regards to its partnership with Microsoft, triggering speculation about the company's strategic objectives. [95]
Timescales
Progress in artificial intelligence has traditionally gone through durations of quick development separated by periods when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software application or both to produce space for further progress. [82] [98] [99] For example, the computer hardware offered in the twentieth century was not enough to implement deep knowing, which needs large numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that quotes of the time required before a genuinely versatile AGI is constructed differ from ten years to over a century. As of 2007 [upgrade], the agreement in the AGI research study community seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI researchers have actually offered a large range of opinions on whether development will be this quick. A 2012 meta-analysis of 95 such opinions found a predisposition towards predicting that the start of AGI would take place within 16-26 years for modern and historical forecasts alike. That paper has been criticized for how it categorized opinions as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the standard technique used a weighted amount of ratings from different pre-defined classifiers). [105] AlexNet was considered the preliminary ground-breaker of the existing deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on openly available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old kid in very first grade. A grownup comes to about 100 typically. Similar tests were performed in 2014, with the IQ score reaching a maximum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model capable of performing lots of varied tasks without specific training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to adhere to their security standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of performing more than 600 various tasks. [110]
In 2023, Microsoft Research published a study on an early version of OpenAI's GPT-4, contending that it displayed more basic intelligence than previous AI designs and demonstrated human-level efficiency in tasks covering multiple domains, such as mathematics, coding, and law. This research study sparked a debate on whether GPT-4 might be thought about an early, insufficient variation of synthetic general intelligence, emphasizing the need for additional exploration and examination of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]
The concept that this things might in fact get smarter than people - a couple of individuals thought that, [...] But the majority of people believed it was method off. And I believed it was method off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis likewise said that "The progress in the last couple of years has been pretty unbelievable", and that he sees no reason that it would decrease, expecting AGI within a years or even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within five years, AI would can passing any test at least along with people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI employee, approximated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation
While the advancement of transformer models like in ChatGPT is considered the most appealing course to AGI, [116] [117] whole brain emulation can function as an alternative method. With whole brain simulation, a brain model is constructed by scanning and mapping a biological brain in information, and after that copying and simulating it on a computer system or another computational device. The simulation model must be sufficiently devoted to the original, so that it acts in practically the very same way as the original brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research study functions. It has been discussed in expert system research study [103] as a technique to strong AI. Neuroimaging innovations that could deliver the needed in-depth understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of adequate quality will become readily available on a comparable timescale to the computing power needed to replicate it.
Early approximates
For low-level brain simulation, an extremely effective cluster of computer systems or GPUs would be needed, offered the huge amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by their adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based upon an easy switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at numerous estimates for the hardware required to equal the human brain and adopted a figure of 1016 calculations per second (cps). [e] (For comparison, if a "computation" was equivalent to one "floating-point operation" - a procedure utilized to rate existing supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was accomplished in 2022.) He utilized this figure to anticipate the required hardware would be readily available at some point between 2015 and 2025, if the rapid growth in computer system power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has developed an especially comprehensive and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The synthetic neuron model presumed by Kurzweil and utilized in many present synthetic neural network executions is simple compared with biological neurons. A brain simulation would likely have to catch the comprehensive cellular behaviour of biological neurons, currently understood just in broad summary. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would need computational powers numerous orders of magnitude larger than Kurzweil's estimate. In addition, the estimates do not represent glial cells, which are known to play a function in cognitive processes. [125]
A basic criticism of the simulated brain technique stems from embodied cognition theory which asserts that human personification is an important element of human intelligence and is required to ground significance. [126] [127] If this theory is correct, any totally practical brain model will require to include more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, but it is unknown whether this would be sufficient.
Philosophical viewpoint
"Strong AI" as specified in approach
In 1980, theorist John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference in between 2 hypotheses about expert system: [f]
Strong AI hypothesis: A synthetic intelligence system can have "a mind" and "consciousness". Weak AI hypothesis: An expert system system can (only) act like it thinks and has a mind and awareness.
The very first one he called "strong" due to the fact that it makes a more powerful declaration: it assumes something unique has happened to the device that goes beyond those abilities that we can test. The behaviour of a "weak AI" machine would be precisely identical to a "strong AI" machine, but the latter would likewise have subjective conscious experience. This usage is also common in academic AI research study and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to suggest "human level synthetic general intelligence". [102] This is not the very same as Searle's strong AI, unless it is assumed that awareness is essential for human-level AGI. Academic thinkers such as Searle do not believe that holds true, and to most synthetic intelligence researchers the question is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, asystechnik.com they don't care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no need to understand if it really has mind - undoubtedly, there would be no other way to tell. For AI research study, Searle's "weak AI hypothesis" is equivalent to the declaration "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are two different things.
Consciousness
Consciousness can have different meanings, and some elements play considerable roles in sci-fi and the principles of expert system:
Sentience (or "phenomenal consciousness"): The ability to "feel" perceptions or emotions subjectively, instead of the ability to reason about perceptions. Some thinkers, such as David Chalmers, use the term "consciousness" to refer specifically to sensational consciousness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience emerges is referred to as the tough issue of consciousness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be conscious. If we are not mindful, then it does not seem like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had actually achieved sentience, though this claim was commonly challenged by other specialists. [135]
Self-awareness: To have mindful awareness of oneself as a separate person, particularly to be knowingly mindful of one's own thoughts. This is opposed to simply being the "topic of one's thought"-an operating system or debugger has the ability to be "mindful of itself" (that is, to represent itself in the same method it represents everything else)-but this is not what individuals usually imply when they utilize the term "self-awareness". [g]
These characteristics have an ethical dimension. AI life would trigger issues of well-being and legal protection, likewise to animals. [136] Other elements of awareness related to cognitive abilities are likewise relevant to the concept of AI rights. [137] Finding out how to integrate advanced AI with existing legal and social structures is an emerging issue. [138]
Benefits
AGI could have a wide array of applications. If oriented towards such objectives, AGI could assist reduce different problems on the planet such as appetite, poverty and health issues. [139]
AGI could enhance productivity and effectiveness in a lot of tasks. For example, in public health, AGI might accelerate medical research, notably against cancer. [140] It could take care of the senior, [141] and democratize access to rapid, high-quality medical diagnostics. It might use fun, cheap and individualized education. [141] The need to work to subsist could become obsolete if the wealth produced is correctly rearranged. [141] [142] This likewise raises the question of the location of human beings in a drastically automated society.
AGI could likewise assist to make reasonable decisions, and to prepare for and avoid catastrophes. It might likewise help to profit of possibly catastrophic technologies such as nanotechnology or climate engineering, while avoiding the associated threats. [143] If an AGI's primary objective is to avoid existential catastrophes such as human termination (which could be difficult if the Vulnerable World Hypothesis ends up being true), [144] it might take procedures to drastically minimize the risks [143] while lessening the impact of these steps on our quality of life.
Risks
Existential threats
AGI might represent numerous types of existential threat, which are risks that threaten "the early termination of Earth-originating intelligent life or the irreversible and drastic damage of its potential for preferable future development". [145] The risk of human extinction from AGI has been the topic of lots of debates, but there is also the possibility that the advancement of AGI would result in a permanently problematic future. Notably, it might be used to spread out and maintain the set of values of whoever establishes it. If humanity still has ethical blind spots comparable to slavery in the past, AGI may irreversibly entrench it, preventing moral progress. [146] Furthermore, AGI might assist in mass security and brainwashing, which could be used to develop a stable repressive worldwide totalitarian regime. [147] [148] There is likewise a danger for the makers themselves. If makers that are sentient or otherwise deserving of ethical factor to consider are mass created in the future, taking part in a civilizational course that forever overlooks their welfare and interests might be an existential disaster. [149] [150] Considering how much AGI might improve mankind's future and help in reducing other existential risks, Toby Ord calls these existential risks "an argument for proceeding with due caution", not for "abandoning AI". [147]
Risk of loss of control and human termination
The thesis that AI postures an existential risk for people, and that this threat requires more attention, is questionable however has actually been endorsed in 2023 by numerous public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed extensive indifference:
So, dealing with possible futures of enormous benefits and threats, the specialists are definitely doing whatever possible to make sure the very best result, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll show up in a few years,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The potential fate of mankind has sometimes been compared to the fate of gorillas threatened by human activities. The contrast specifies that greater intelligence permitted mankind to dominate gorillas, which are now vulnerable in ways that they might not have actually prepared for. As a result, the gorilla has actually ended up being a threatened types, not out of malice, but simply as a collateral damage from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to control humanity which we must beware not to anthropomorphize them and interpret their intents as we would for people. He stated that individuals will not be "clever sufficient to create super-intelligent devices, yet extremely foolish to the point of giving it moronic goals with no safeguards". [155] On the other side, the principle of important convergence suggests that almost whatever their objectives, intelligent agents will have reasons to attempt to survive and obtain more power as intermediary steps to attaining these goals. And that this does not need having feelings. [156]
Many scholars who are worried about existential risk advocate for more research study into resolving the "control problem" to answer the question: what kinds of safeguards, algorithms, or architectures can programmers implement to maximise the probability that their recursively-improving AI would continue to behave in a friendly, rather than destructive, way after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which could lead to a race to the bottom of safety preventative measures in order to release items before competitors), [159] and the use of AI in weapon systems. [160]
The thesis that AI can present existential danger also has critics. Skeptics usually state that AGI is not likely in the short-term, or that issues about AGI sidetrack from other problems connected to present AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for lots of people beyond the innovation market, existing chatbots and LLMs are already perceived as though they were AGI, resulting in additional misunderstanding and worry. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence changing an unreasonable belief in a supreme God. [163] Some researchers believe that the interaction projects on AI existential danger by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulatory capture and to inflate interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and scientists, released a joint declaration asserting that "Mitigating the risk of termination from AI need to be an international concern along with other societal-scale risks such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work tasks affected by the intro of LLMs, while around 19% of employees might see a minimum of 50% of their tasks impacted". [166] [167] They consider workplace employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI might have a much better autonomy, capability to make decisions, to user interface with other computer tools, but likewise to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can enjoy a life of luxurious leisure if the machine-produced wealth is shared, or many people can end up miserably poor if the machine-owners effectively lobby against wealth redistribution. So far, the trend appears to be toward the 2nd choice, with technology driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need federal governments to adopt a universal basic earnings. [168]
See also
Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain AI impact AI safety - Research area on making AI safe and advantageous AI positioning - AI conformance to the designated objective A.I. Rising - 2018 movie directed by Lazar Bodroža Expert system Automated artificial intelligence - Process of automating the application of machine knowing BRAIN Initiative - Collaborative public-private research initiative announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General game playing - Ability of synthetic intelligence to play various video games Generative artificial intelligence - AI system efficient in creating material in reaction to triggers Human Brain Project - Scientific research project Intelligence amplification - Use of information technology to enhance human intelligence (IA). Machine principles - Moral behaviours of man-made devices. Moravec's paradox. Multi-task knowing - Solving numerous device learning jobs at the exact same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to expert system. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or kind of expert system. Transfer learning - Artificial intelligence strategy. Loebner Prize - Annual AI competitors. Hardware for artificial intelligence - Hardware specially developed and optimized for synthetic intelligence. Weak expert system - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the short article Chinese space. ^ AI founder John McCarthy writes: "we can not yet identify in basic what kinds of computational treatments we wish to call smart. " [26] (For a discussion of some meanings of intelligence utilized by expert system scientists, see approach of expert system.). ^ The Lighthill report particularly criticized AI's "grand goals" and led the dismantling of AI research in England. [55] In the U.S., DARPA became figured out to money just "mission-oriented direct research, rather than fundamental undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be a terrific relief to the remainder of the workers in AI if the innovators of brand-new general formalisms would express their hopes in a more secured type than has sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a basic AI textbook: "The assertion that devices could possibly act smartly (or, perhaps better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that machines that do so are actually thinking (as opposed to imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to perform a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that artificial general intelligence advantages all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is producing synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were identified as being active in 2020. ^ a b c "AI timelines: What do experts in artificial intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton quits Google and alerts of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can prevent the bad stars from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals sparks of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The real threat is not AI itself however the way we release it. ^ "Impressed by synthetic intelligence? Experts state AGI is following, genbecle.com and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might position existential risks to humankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last innovation that humankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of extinction from AI need to be a worldwide concern. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts caution of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from developing devices that can outthink us in basic ways. ^ LeCun, Yann (June 2023). "AGI does not provide an existential threat". Medium. There is no reason to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "maker intelligence with the full variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is changing our world - it is on everyone to make sure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent traits is based on the topics covered by significant AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of tough exams both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software application engineers avoided the term synthetic intelligence for worry of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite development in maker intelligence, synthetic general intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not turn into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general artificial intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A study of skilled viewpoint. In Fundamental issues of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as smart as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI golden zone between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, but the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a happy medium between narrow and general AI. ^ Quach, Katyanna. "A designer constructed an AI chatbot using GPT-3 that assisted a man speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 tasks, from playing video games to managing robotics", TechCrunch, archived from the original on 16 June 2022, recovered 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could measure up to human intelligence in 'just a couple of years,' says CEO of Google's primary A.I. research study laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide variety of views in present research, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer might end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced estimate in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable artificial intelligence for interest by the field about why a program behaves the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense outweigh advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, threats, strategies (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that people will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security risk' to Australia, Senate query states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of synthetic intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The remarkable Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI". The fascinating Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI danger: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report warns". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk positioned but synthetic intelligence can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, caution scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator states huge tech is lying about AI termination threat". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market effect capacity of large language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers might see their jobs affected by AI. These are the jobs most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal standard earnings because 'in the future, manual labor will be an option'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Point of view, archived from the original on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer system programs that can resolve issues and achieve goals in the world along with humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: qoocle.com Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York: Oxford University Press, archived from the original on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, recovered 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system basic adequate to be easy to understand will not be complicated enough to act intelligently, while any system complicated enough to act smartly will be too made complex to comprehend." (p. 197.) Computer researcher Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead easy stupid. They work, but they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from makers. For biological animals, factor and purpose originate from acting worldwide and experiencing the repercussions. Artificial intelligences - disembodied, strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably expect that those who hope to get rich from AI are going to have the interests of the rest people close at heart,' ... writes [Gary Marcus] 'We can't rely on governments driven by project financing contributions [from tech business] to press back.' ... Marcus details the demands that residents need to make of their federal governments and the tech companies. They include openness on how AI systems work; settlement for individuals if their information [are] used to train LLMs (big language design) s and the right to permission to this usage; and the capability to hold tech companies accountable for the damages they trigger by eliminating Section 230, imposing cash penalites, and passing more stringent product liability laws ... Marcus also recommends ... that a new, AI-specific federal agency, similar to the FDA, the FCC, or the FTC, might offer the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... suggests ... develop [ing] a professional licensing program for engineers that would function in a comparable method to medical licenses, malpractice matches, and the Hippocratic oath in medication. 'What if, like doctors,' she asks ..., 'AI engineers likewise pledged to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stumped people for years, exposes the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has exposed that although NLP (natural-language processing) designs can unbelievable feats, their capabilities are really much limited by the quantity of context they receive. This [...] might trigger [difficulties] for scientists who hope to use them to do things such as evaluate ancient languages. In many cases, there are couple of historic records on long-gone civilizations to work as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to generate fake videos identical from genuine ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we suggest realistic videos produced using expert system that in fact deceive individuals, then they barely exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, running in our media as counterfeited evidence. Their function better looks like that of animations, especially smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to prevent humanizing machine-learning designs utilized in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of artificial basic intelligence are stymmied by the very same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to ignore inconsistent proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that need real humanlike reasoning or an understanding of the physical and social world ... ChatGPT seemed unable to reason realistically and attempted to count on its vast database of ... facts stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective but unreliable. Rules-based systems can not handle circumstances their developers did not expect. Learning systems are limited by the data on which they were trained. AI failures have actually already led to disaster. Advanced auto-pilot functions in vehicles, although they perform well in some circumstances, have actually driven vehicles without cautioning into trucks, concrete barriers, and parked vehicles. In the incorrect situation, AI systems go from supersmart to superdumb in an immediate. When an enemy is attempting to manipulate and hack an AI system, the threats are even higher." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by brand-new technologies however count on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.