DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion parameters to construct, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled versions of the designs too.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that utilizes support discovering to improve thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A key distinguishing feature is its reinforcement knowing (RL) step, which was used to refine the model's actions beyond the standard pre-training and tweak process. By integrating RL, DeepSeek-R1 can adjust more efficiently to user feedback and goals, ultimately enhancing both significance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, implying it's equipped to break down complex questions and reason through them in a detailed way. This directed reasoning procedure permits the design to produce more accurate, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT capabilities, aiming to produce structured responses while concentrating on interpretability and wiki.snooze-hotelsoftware.de user interaction. With its extensive capabilities DeepSeek-R1 has actually captured the market's attention as a versatile text-generation model that can be integrated into different workflows such as agents, rational reasoning and information analysis jobs.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion specifications, enabling efficient inference by routing queries to the most relevant expert "clusters." This approach enables the model to specialize in various problem domains while maintaining total performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 model to more effective architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more efficient models to mimic the behavior and thinking patterns of the bigger DeepSeek-R1 design, utilizing it as an instructor model.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this model with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, avoid harmful content, and examine models against key security criteria. At the time of writing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce numerous guardrails tailored to different use cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing security controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limit boost, create a limitation increase request and connect to your account team.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For guidelines, see Establish consents to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to present safeguards, prevent hazardous material, and evaluate models against key safety requirements. You can implement precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to evaluate user inputs and design responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The basic circulation involves the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas demonstrate reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:
1. On the Amazon Bedrock console, pick Model catalog under Foundation models in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 design.
The model detail page supplies important details about the model's abilities, pricing structure, and application guidelines. You can discover detailed use directions, consisting of sample API calls and code snippets for integration. The model supports numerous text generation tasks, including content development, code generation, and question answering, using its reinforcement discovering optimization and CoT thinking abilities.
The page likewise includes deployment options and licensing details to assist you begin with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, pick Deploy.
You will be prompted to set up the release details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters).
5. For Variety of circumstances, go into a number of circumstances (in between 1-100).
6. For Instance type, pick your circumstances type. For optimal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested.
Optionally, you can set up advanced security and facilities settings, consisting of virtual private cloud (VPC) networking, service role approvals, and encryption settings. For most utilize cases, the default settings will work well. However, for production deployments, you might want to examine these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to start using the design.
When the implementation is complete, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock playground.
8. Choose Open in play ground to access an interactive user interface where you can experiment with different triggers and change model criteria like temperature level and maximum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal results. For example, material for reasoning.
This is an outstanding method to explore the model's reasoning and text generation capabilities before incorporating it into your applications. The play ground offers immediate feedback, helping you understand how the model responds to various inputs and letting you fine-tune your prompts for optimal outcomes.
You can quickly check the design in the play area through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to perform inference utilizing a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have created the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime client, configures inference specifications, and sends out a demand to generate text based on a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML services that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart uses 2 practical approaches: using the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both methods to assist you pick the approach that finest matches your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, pick Studio in the navigation pane.
2. First-time users will be prompted to produce a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The design internet browser displays available designs, with details like the service provider name and design abilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card.
Each design card shows essential details, consisting of:
- Model name
- Provider name
- Task classification (for instance, Text Generation).
Bedrock Ready badge (if suitable), indicating that this design can be registered with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to conjure up the model
5. Choose the design card to see the design details page.
The design details page includes the following details:
- The design name and service provider details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab consists of essential details, such as:
- Model description. - License details.
- Technical requirements.
- Usage standards
Before you release the design, it's recommended to examine the model details and license terms to validate compatibility with your use case.
6. Choose Deploy to proceed with implementation.
7. For Endpoint name, utilize the automatically generated name or produce a custom one.
- For example type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, enter the variety of circumstances (default: 1). Selecting proper instance types and counts is vital for expense and efficiency optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time inference is chosen by default. This is optimized for sustained traffic and low latency.
- Review all configurations for precision. For this model, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
- Choose Deploy to deploy the model.
The can take several minutes to complete.
When deployment is complete, your endpoint status will change to InService. At this point, the design is prepared to accept reasoning demands through the endpoint. You can keep track of the deployment progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is complete, you can invoke the design using a SageMaker runtime customer and integrate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get going with DeepSeek-R1 using the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the required AWS authorizations and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the design is supplied in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run extra demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and implement it as shown in the following code:
Clean up
To prevent undesirable charges, finish the steps in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace implementation
If you released the model utilizing Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace releases. - In the Managed deployments area, find the endpoint you desire to erase.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you're deleting the appropriate implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies build ingenious options using AWS services and accelerated compute. Currently, he is focused on developing strategies for fine-tuning and optimizing the reasoning performance of big language models. In his downtime, Vivek enjoys hiking, watching movies, and attempting various foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about building services that help consumers accelerate their AI journey and unlock company value.