DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled versions ranging from 1.5 to 70 billion criteria to construct, experiment, and responsibly scale your generative AI ideas on AWS.
In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled versions of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that uses reinforcement learning to boost reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key differentiating feature is its support knowing (RL) action, which was utilized to refine the model's actions beyond the basic pre-training and tweak process. By incorporating RL, DeepSeek-R1 can adapt better to user feedback and goals, ultimately boosting both relevance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, indicating it's geared up to break down complicated queries and reason through them in a detailed way. This guided thinking process enables the design to produce more precise, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT abilities, aiming to generate structured actions while concentrating on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has recorded the industry's attention as a versatile text-generation design that can be integrated into different workflows such as agents, logical thinking and data interpretation jobs.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion criteria, making it possible for effective reasoning by routing questions to the most relevant specialist "clusters." This method enables the model to focus on different problem domains while maintaining overall performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 model to more effective architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more efficient models to imitate the behavior and reasoning patterns of the bigger DeepSeek-R1 model, using it as a teacher design.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest releasing this design with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to present safeguards, avoid harmful content, and assess designs against essential security criteria. At the time of composing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce multiple guardrails tailored to different usage cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limitation increase, create a limitation increase demand and reach out to your account group.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) consents to use Amazon Bedrock Guardrails. For directions, see Set up authorizations to use guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to present safeguards, avoid harmful material, and examine designs against crucial security requirements. You can execute precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to evaluate user inputs and design reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The basic flow involves the following steps: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After getting the model's output, another guardrail check is used. If the output passes this final check, it's returned as the last result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following sections demonstrate inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:
1. On the Amazon Bedrock console, pick Model brochure under Foundation models in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and pick the DeepSeek-R1 model.
The design detail page offers vital details about the design's abilities, prices structure, and implementation standards. You can discover detailed usage instructions, consisting of sample API calls and code bits for combination. The design supports various text generation jobs, consisting of content production, code generation, and concern answering, using its support learning optimization and CoT reasoning abilities.
The page likewise consists of deployment options and licensing details to help you start with DeepSeek-R1 in your applications.
3. To begin using DeepSeek-R1, pick Deploy.
You will be triggered to set up the deployment details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters).
5. For Number of instances, get in a variety of circumstances (between 1-100).
6. For Instance type, select your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested.
Optionally, you can set up innovative security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service role consents, and encryption settings. For the majority of utilize cases, the default settings will work well. However, for production deployments, you may wish to examine these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to begin using the design.
When the deployment is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock playground.
8. Choose Open in play ground to access an interactive interface where you can experiment with different prompts and adjust design criteria like temperature and maximum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum outcomes. For instance, material for reasoning.
This is an excellent way to explore the design's reasoning and text generation abilities before integrating it into your applications. The play area offers instant feedback, helping you comprehend how the design responds to numerous inputs and letting you fine-tune your prompts for optimum results.
You can rapidly evaluate the model in the play ground through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to perform reasoning using a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have developed the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up inference specifications, and sends a request to create text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML solutions that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 convenient approaches: utilizing the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both approaches to help you choose the approach that finest suits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to create a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The model browser shows available designs, trademarketclassifieds.com with details like the service provider name and design abilities.
4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card.
Each design card reveals crucial details, including:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if appropriate), suggesting that this model can be registered with Amazon Bedrock, it-viking.ch permitting you to utilize Amazon Bedrock APIs to invoke the design
5. Choose the model card to see the design details page.
The design details page consists of the following details:
- The model name and supplier details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab includes important details, such as:
- Model description. - License details.
- Technical requirements.
- Usage standards
Before you release the design, it's recommended to review the design details and license terms to confirm compatibility with your usage case.
6. Choose Deploy to continue with implementation.
7. For Endpoint name, utilize the immediately created name or produce a custom-made one.
- For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, go into the number of instances (default: 1). Selecting appropriate circumstances types and counts is essential for expense and performance optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is optimized for sustained traffic and low latency.
- Review all configurations for accuracy. For this design, we strongly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to deploy the design.
The implementation process can take several minutes to complete.
When release is complete, your endpoint status will change to InService. At this moment, the model is ready to accept reasoning requests through the endpoint. You can monitor setiathome.berkeley.edu the deployment development on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the implementation is total, you can conjure up the model utilizing a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To begin with DeepSeek-R1 using the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the essential AWS approvals and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the model is supplied in the Github here. You can clone the notebook and range from SageMaker Studio.
You can run extra requests against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:
Tidy up
To avoid unwanted charges, complete the actions in this section to clean up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you deployed the model utilizing Amazon Bedrock Marketplace, total the following steps:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace deployments. - In the Managed deployments section, find the endpoint you want to delete.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're erasing the correct deployment: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in or Amazon Bedrock Marketplace now to begin. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build ingenious options utilizing AWS services and 89u89.com sped up compute. Currently, he is focused on developing strategies for fine-tuning and optimizing the inference performance of large language models. In his free time, Vivek takes pleasure in treking, seeing movies, and trying various cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing services that help customers accelerate their AI journey and unlock business value.