Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in
J
jobpanda
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 36
    • Issues 36
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Alba Brinson
  • jobpanda
  • Issues
  • #29

Closed
Open
Opened Apr 05, 2025 by Alba Brinson@albabrinson882
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model


DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with reinforcement knowing (RL) to enhance thinking ability. DeepSeek-R1 attains outcomes on par with OpenAI's o1 model on a number of benchmarks, consisting of MATH-500 and SWE-bench.

DeepSeek-R1 is based on DeepSeek-V3, a mixture of specialists (MoE) design just recently open-sourced by DeepSeek. This base design is fine-tuned utilizing Group Relative Policy Optimization (GRPO), a reasoning-oriented version of RL. The research study team likewise performed knowledge distillation from DeepSeek-R1 to open-source Qwen and Llama models and released several versions of each; these designs outperform larger designs, including GPT-4, on mathematics and coding standards.

[DeepSeek-R1 is] the primary step towards improving language model thinking capabilities using pure reinforcement knowing (RL). Our goal is to explore the capacity of LLMs to develop reasoning abilities without any supervised data, focusing on their self-evolution through a pure RL process...DeepSeek-R1 ... master a vast array of jobs, including creative writing, general question answering, editing, summarization, and more. Additionally, DeepSeek-R1 demonstrates outstanding performance on jobs requiring long-context understanding, considerably exceeding DeepSeek-V3 on long-context standards.

To establish the design, DeepSeek started with DeepSeek-V3 as a base. They initially attempted fine-tuning it just with RL, and without any supervised fine-tuning (SFT), producing a model called DeepSeek-R1-Zero, which they have likewise released. This design displays strong thinking efficiency, however" effective reasoning habits, it deals with several concerns. For example, DeepSeek-R1-Zero battles with difficulties like bad readability and language blending."

To resolve this, the team utilized a brief phase of SFT to avoid the "cold start" issue of RL. They gathered a number of thousand examples of chain-of-thought reasoning to use in SFT of DeepSeek-V3 before running RL. After the RL process assembled, they then gathered more SFT information using rejection sampling, resulting in a dataset of 800k samples. This dataset was utilized for further fine-tuning and to produce the distilled models from Llama and Qwen.

DeepSeek examined their design on a range of reasoning, mathematics, and coding criteria and compared it to other designs, including Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 outshined all of them on numerous of the standards, pipewiki.org including AIME 2024 and MATH-500.

DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report

Within a couple of days of its release, the LMArena revealed that DeepSeek-R1 was ranked # 3 overall in the arena and # 1 in coding and mathematics. It was also tied for # 1 with o1 in "Hard Prompt with Style Control" category.

Django structure co-creator Simon Willison discussed his try outs one of the DeepSeek distilled Llama designs on his blog site:

Each action starts with a ... pseudo-XML tag containing the chain of idea used to assist produce the reaction. [Given the prompt] "a joke about a pelican and a walrus who run a tea room together" ... It then thought for 20 paragraphs before outputting the joke! ... [T] he joke is horrible. But the procedure of arriving was such a fascinating insight into how these brand-new designs work.

Andrew Ng's newsletter The Batch composed about DeepSeek-R1:

DeepSeek is quickly becoming a strong home builder of open designs. Not only are these designs excellent entertainers, however their license permits use of their outputs for distillation, possibly pressing forward the state of the art for language models (and multimodal models) of all sizes.

The DeepSeek-R1 designs are available on HuggingFace.

About the Author

Anthony Alford

Rate this Article

This material remains in the AI, ML & Data Engineering subject

Related Topics:

- AI, ML & Data Engineering - Generative AI

  • Large language models

    - Related Editorial

    Related Sponsored Content

    - [eBook] Starting with Azure Kubernetes Service

    Related Sponsor

    Free services for AI apps. Are you ready to try out advanced technologies? You can start building intelligent apps with complimentary Azure app, information, and AI services to minimize upfront expenses. Discover more.

    How could we improve? Take the study

    Each year, we seek feedback from our readers to assist us improve InfoQ. Would you mind spending 2 minutes to share your feedback in our short survey? Your feedback will straight help us constantly progress how we support you. The InfoQ Team Take the study

    Related Content

    The InfoQ Newsletter

    A round-up of last week's content on InfoQ sent out every Tuesday. Join a community of over 250,000 senior designers.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: albabrinson882/jobpanda#29