Commit b3f1dde1 authored by fisherdaddy's avatar fisherdaddy

feature: deepseek重大产品发布时间一览

parent b027fa3e
...@@ -29,6 +29,7 @@ const TextBehindImage = lazy(() => import('./components/TextBehindImage')); ...@@ -29,6 +29,7 @@ const TextBehindImage = lazy(() => import('./components/TextBehindImage'));
const BackgroundRemover = lazy(() => import('./components/BackgroundRemover')); const BackgroundRemover = lazy(() => import('./components/BackgroundRemover'));
const AnthropicTimeline = lazy(() => import('./components/AnthropicTimeline')); const AnthropicTimeline = lazy(() => import('./components/AnthropicTimeline'));
const DrugsList = lazy(() => import('./components/DrugsList')); const DrugsList = lazy(() => import('./components/DrugsList'));
const DeepSeekTimeline = lazy(() => import('./components/DeepSeekTimeline'));
function App() { function App() {
return ( return (
...@@ -65,6 +66,7 @@ function App() { ...@@ -65,6 +66,7 @@ function App() {
<Route path="/image-watermark" element={<ImageWatermark />} /> <Route path="/image-watermark" element={<ImageWatermark />} />
<Route path="/text-behind-image" element={<TextBehindImage />} /> <Route path="/text-behind-image" element={<TextBehindImage />} />
<Route path="/background-remover" element={<BackgroundRemover />} /> <Route path="/background-remover" element={<BackgroundRemover />} />
<Route path="/deepseek-timeline" element={<DeepSeekTimeline />} />
<Route path="*" element={<NotFound />} /> <Route path="*" element={<NotFound />} />
</Routes> </Routes>
......
import React from 'react';
import { useScrollToTop } from '../hooks/useScrollToTop';
import '../styles/Timeline.css';
import events from '../data/deepseek-releases.json';
import SEO from '../components/SEO';
import { useTranslation } from '../js/i18n';
import { usePageLoading } from '../hooks/usePageLoading';
import LoadingOverlay from './LoadingOverlay';
const Timeline = () => {
useScrollToTop();
const { t } = useTranslation();
const isLoading = usePageLoading();
return (
<>
<SEO
title={t('tools.deepSeekTimeline.title')}
description={t('tools.deepSeekTimeline.description')}
/>
{isLoading && <LoadingOverlay />}
<div className="timeline-container">
<h1 className="timeline-title">{t('tools.deepSeekTimeline.title')}</h1>
<ul className="timeline">
{events.map((item, index) => (
<li className="event" key={index}>
<div className="event-content">
<div className="event-date">{item.date}</div>
<div className="event-title">{item.title}</div>
<div className="event-feature">{item.feature}</div>
<div className="event-description">{item.description}</div>
</div>
</li>
))}
</ul>
</div>
</>
);
};
export default Timeline;
[
{
"date": "2023年7月",
"title": "DeepSeek 公司成立",
"feature": "致力于 AGI",
"description": "由知名量化资管巨头幻方量化创立,其掌门人梁文锋是 DeepSeek 的创始人。"
},
{
"date": "2023年11月",
"title": "开源 DeepSeekLLM 7B 和 67B 的 Base 和 Chat 模型",
"feature": "DeepSeek LLM 67B Base 在推理、代码、数学和中文理解等多个领域超越了 Llama2 70B Base。",
"description": "DeepSeek Coder 是一系列从零在包含 87% 代码和 13% 自然语言的 2T tokens 数据集上从头开始训练的代码语言模型,它旨在提升代码编写的效率和质量,MIT 许可并允许商业用途。"
},
{
"date": "2024年2月",
"title": "开源 DeepSeek Coder 系列模型",
"feature": "DeepSeek Coder 提供 1B、5.7B、6.7B 和 33B 等多种模型尺寸,用户可以根据自身需求和硬件条件选择合适的模型。",
"description": "在 HumanEval, MultiPL-E, MBPP, DS-1000 和 APPS 基准测试中,性能在公开可用的代码模型中处于领先地位,MIT 许可并允许商业用途。"
},
{
"date": "2024年2月",
"title": "开源 DeepSeek Math 模型",
"feature": "DeepSeekMath 7B 模型在 MATH 基准测试中取得了令人印象深刻的 51.7% 的成绩,接近 Gemini-Ultra 和 GPT-4 的水平,且未使用外部工具或投票技术。该模型包含 Base 、 Instruct 和 RL 三个版本。",
"description": "DeepSeekMath 基于 DeepSeek-Coder-v1.5 7B 初始化,并在来自 Common Crawl 的数学相关 tokens 以及自然语言和代码数据上进行了 500B tokens 的持续预训练,MIT 许可并允许商业用途。"
},
{
"date": "2024年3月",
"title": "开源 DeepSeek-VL 系列模型",
"feature": "该模型具备通用的多模态理解能力,能够处理包括逻辑图表、网页、公式识别、科学文献、自然图像以及复杂场景中的具身智能等多种任务。",
"description": "DeepSeek-VL 系列模型,包括 7B 和 1.3B 参数两种尺寸,并分别提供 base 和 chat 版本,MIT 许可并允许商业用途。"
},
{
"date": "2024年5月",
"title": "开源 DeepSeek-V2 系列模型",
"feature": "经济高效的混合专家 (MoE) 语言模型",
"description": "该模型总参数量为 236B,在包含 8.1 万亿 token 的多样化、高质量语料库上进行了预训练,并经过 SFT 和 RL 过程进行优化。与 DeepSeek 67B 相比,DeepSeek-V2 实现了更强的性能,并分别提供 base 和 chat 版本,MIT 许可并允许商业用途。"
},
{
"date": "2024年7月",
"title": "开源 DeepSeek-Coder-V2 系列模型",
"feature": "混合专家模型 (MoE) 代码语言模型",
"description": "DeepSeek-Coder-V2 基于 DeepSeekMoE 框架,提供 16B 和 236B 总参数量的模型,并提供 Base 和 Instruct 模型,MIT 许可均可公开下载和商用。"
},
{
"date": "2024年12月26日",
"title": "开源 DeepSeek-V3 系列模型",
"feature": "DeepSeek-V3 采用 MoE 架构,总参数 671B",
"description": "DeepSeek-V3 在 14.8 万亿高质量 token 上进行了预训练,并通过监督微调和强化学习进一步提升性能。该模型在 DeepSeek-V2 的基础上进行了创新,采用了多头潜在注意力 (MLA) 和 DeepSeekMoE 架构,并引入了无辅助损失的负载均衡策略和多 token 预测训练目标,旨在实现高效推理和低成本训练。MIT 许可均可公开下载和商用。"
},
{
"date": "2025年1月20日",
"title": "开源推理模型 DeepSeek-R1",
"feature": "性能比肩 OpenAI o1,成本低廉",
"description": "2025年1月20日,DeepSeek推出了推理模型 DeepSeek-R1,并同步开源其模型权重,通过大规模强化学习技术显著提升推理能力,性能媲美顶尖闭源产品,迅速引发全球关注。MIT 许可均可公开下载和商用。"
},
{
"date": "2025年1月28日",
"title": "开源 Janus-Pro",
"feature": "一个新颖的自回归框架,多模态理解与生成的统一",
"description": "Janus-Pro 是 Janus 的升级版本,通过优化训练策略、扩展训练数据和扩大模型规模,在多模态理解和文本到图像的指令跟随能力上都得到了显著提升,同时增强了文本到图像生成的稳定性。"
}
]
\ No newline at end of file
...@@ -223,6 +223,10 @@ ...@@ -223,6 +223,10 @@
"title": "Anthropic Product Release", "title": "Anthropic Product Release",
"description": "Timeline of Anthropic's major product releases and events" "description": "Timeline of Anthropic's major product releases and events"
}, },
"deepSeekTimeline": {
"title": "DeepSeek Product Release",
"description": "Timeline of DeepSeek's major product releases and events"
},
"drugsList": { "drugsList": {
"title": "Imported Original Drug Directory of China", "title": "Imported Original Drug Directory of China",
"description": "Drug name, manufacturer, and category information", "description": "Drug name, manufacturer, and category information",
......
...@@ -223,6 +223,10 @@ ...@@ -223,6 +223,10 @@
"title": "Anthropic 製品リリース", "title": "Anthropic 製品リリース",
"description": "Anthropic 製品リリース時刻表" "description": "Anthropic 製品リリース時刻表"
}, },
"deepSeekTimeline": {
"title": "DeepSeek 製品リリース",
"description": "DeepSeek 製品リリース時刻表"
},
"drugsList": { "drugsList": {
"title": "中国輸入オリジナル薬品リスト", "title": "中国輸入オリジナル薬品リスト",
"description": "薬品名、製造会社、カテゴリ情報", "description": "薬品名、製造会社、カテゴリ情報",
......
...@@ -224,6 +224,10 @@ ...@@ -224,6 +224,10 @@
"title": "Anthropic 제품 출시", "title": "Anthropic 제품 출시",
"description": "Anthropic 제품 출시 일정" "description": "Anthropic 제품 출시 일정"
}, },
"deepSeekTimeline": {
"title": "DeepSeek 제품 출시",
"description": "DeepSeek 제품 출시 일정"
},
"drugsList": { "drugsList": {
"title": "중국 수입 원조 약품 목록", "title": "중국 수입 원조 약품 목록",
"description": "약품명, 제조사 및 카테고리 정보", "description": "약품명, 제조사 및 카테고리 정보",
......
...@@ -225,6 +225,10 @@ ...@@ -225,6 +225,10 @@
"title": "Anthropic 产品发布", "title": "Anthropic 产品发布",
"description": "Anthropic 公司重要产品及事件发布时间表" "description": "Anthropic 公司重要产品及事件发布时间表"
}, },
"deepSeekTimeline": {
"title": "DeepSeek 产品发布",
"description": "DeepSeek 产品发布时间一览"
},
"drugsList": { "drugsList": {
"title": "中国进口原研药目录", "title": "中国进口原研药目录",
"description": "药品名称、生产厂商和类别信息", "description": "药品名称、生产厂商和类别信息",
......
...@@ -6,8 +6,10 @@ import SEO from '../components/SEO'; ...@@ -6,8 +6,10 @@ import SEO from '../components/SEO';
const tools = [ const tools = [
{ id: 'openAITimeline', icon: '/assets/icon/openai_small.svg', path: '/openai-timeline' }, { id: 'openAITimeline', icon: '/assets/icon/openai_small.svg', path: '/openai-timeline' },
{ id: 'anthropicTimeline', icon: '/assets/icon/anthropic_small.svg', path: '/anthropic-timeline' }, { id: 'anthropicTimeline', icon: '/assets/icon/anthropic_small.svg', path: '/anthropic-timeline' },
{ id: 'deepSeekTimeline', icon: '/assets/icon/deepseek_small.jpg', path: '/deepseek-timeline' },
{ id: 'modelPrice', icon: '/assets/icon/model-price.svg', path: '/llm-model-price' }, { id: 'modelPrice', icon: '/assets/icon/model-price.svg', path: '/llm-model-price' },
{ id: 'drugsList', icon: '/assets/icon/drugs.svg', path: '/drugs-list' }, { id: 'drugsList', icon: '/assets/icon/drugs.svg', path: '/drugs-list' },
]; ];
const Home = () => { const Home = () => {
......
...@@ -19,6 +19,7 @@ const tools = [ ...@@ -19,6 +19,7 @@ const tools = [
{ id: 'textDiff', icon: '/assets/icon/diff.png', path: '/text-diff' }, { id: 'textDiff', icon: '/assets/icon/diff.png', path: '/text-diff' },
{ id: 'openAITimeline', icon: '/assets/icon/openai_small.svg', path: '/openai-timeline' }, { id: 'openAITimeline', icon: '/assets/icon/openai_small.svg', path: '/openai-timeline' },
{ id: 'anthropicTimeline', icon: '/assets/icon/anthropic_small.svg', path: '/anthropic-timeline' }, { id: 'anthropicTimeline', icon: '/assets/icon/anthropic_small.svg', path: '/anthropic-timeline' },
{ id: 'deepSeekTimeline', icon: '/assets/icon/deepseek_small.jpg', path: '/deepseek-timeline' },
{ id: 'modelPrice', icon: '/assets/icon/model-price.svg', path: '/llm-model-price' }, { id: 'modelPrice', icon: '/assets/icon/model-price.svg', path: '/llm-model-price' },
{ id: 'drugsList', icon: '/assets/icon/drugs.svg', path: '/drugs-list' }, { id: 'drugsList', icon: '/assets/icon/drugs.svg', path: '/drugs-list' },
{ id: 'fisherai', icon: '/assets/icon/fisherai.png', path: 'https://chromewebstore.google.com/detail/fisherai-your-best-summar/ipfiijaobcenaibdpaacbbpbjefgekbj', external: true } { id: 'fisherai', icon: '/assets/icon/fisherai.png', path: 'https://chromewebstore.google.com/detail/fisherai-your-best-summar/ipfiijaobcenaibdpaacbbpbjefgekbj', external: true }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment