Commit 084937e6 authored by fisherdaddy's avatar fisherdaddy

feat: Add AI Timeline page and localization support in multiple languages

parent a329b0f9
<?xml version="1.0" encoding="UTF-8"?>
<svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<!-- Vertical timeline bar -->
<rect x="4" y="3" width="3" height="18" rx="1.5" fill="#6366F1"/>
<!-- Timeline events -->
<circle cx="16" cy="6" r="3" fill="#818CF8"/>
<circle cx="16" cy="12" r="3" fill="#4F46E5"/>
<circle cx="16" cy="18" r="3" fill="#6366F1"/>
<!-- Connecting lines -->
<path d="M7 6H13" stroke="#818CF8" stroke-width="2" stroke-linecap="round"/>
<path d="M7 12H13" stroke="#4F46E5" stroke-width="2" stroke-linecap="round"/>
<path d="M7 18H13" stroke="#6366F1" stroke-width="2" stroke-linecap="round"/>
<!-- AI circuit elements inside the nodes -->
<path d="M15 6H17" stroke="white" stroke-width="1" stroke-linecap="round"/>
<path d="M16 5V7" stroke="white" stroke-width="1" stroke-linecap="round"/>
<path d="M15 12L17 12" stroke="white" stroke-width="1" stroke-linecap="round"/>
<path d="M15.5 11L16.5 13" stroke="white" stroke-width="1" stroke-linecap="round"/>
<path d="M16.5 11L15.5 13" stroke="white" stroke-width="1" stroke-linecap="round"/>
<path d="M14.5 17.5L17.5 18.5" stroke="white" stroke-width="1" stroke-linecap="round"/>
<path d="M14.5 18.5L17.5 17.5" stroke="white" stroke-width="1" stroke-linecap="round"/>
</svg>
\ No newline at end of file
...@@ -32,6 +32,7 @@ const DrugsList = lazy(() => import('./components/DrugsList')); ...@@ -32,6 +32,7 @@ const DrugsList = lazy(() => import('./components/DrugsList'));
const DeepSeekTimeline = lazy(() => import('./components/DeepSeekTimeline')); const DeepSeekTimeline = lazy(() => import('./components/DeepSeekTimeline'));
const WechatFormatter = lazy(() => import('./components/WechatFormatter')); const WechatFormatter = lazy(() => import('./components/WechatFormatter'));
const ImageAnnotator = lazy(() => import('./components/ImageAnnotator')); const ImageAnnotator = lazy(() => import('./components/ImageAnnotator'));
const AITimelinePage = lazy(() => import('./pages/AITimelinePage'));
function App() { function App() {
return ( return (
...@@ -71,6 +72,7 @@ function App() { ...@@ -71,6 +72,7 @@ function App() {
<Route path="/deepseek-timeline" element={<DeepSeekTimeline />} /> <Route path="/deepseek-timeline" element={<DeepSeekTimeline />} />
<Route path="/wechat-formatter" element={<WechatFormatter />} /> <Route path="/wechat-formatter" element={<WechatFormatter />} />
<Route path="/image-annotator" element={<ImageAnnotator />} /> <Route path="/image-annotator" element={<ImageAnnotator />} />
<Route path="/ai-timeline" element={<AITimelinePage />} />
<Route path="*" element={<NotFound />} /> <Route path="*" element={<NotFound />} />
</Routes> </Routes>
</Suspense> </Suspense>
......
import React, { useState, useEffect } from 'react';
import { useScrollToTop } from '../hooks/useScrollToTop';
import '../styles/HorizontalTimeline.css';
import events from '../data/ai-events.json';
import SEO from './SEO';
import { useTranslation } from '../js/i18n';
import { usePageLoading } from '../hooks/usePageLoading';
import LoadingOverlay from './LoadingOverlay';
const categories = [
{ id: 'all', label: 'All Events' },
{ id: 'MODEL_RELEASE', label: 'Model Release' },
{ id: 'RESEARCH', label: 'Research & Papers' },
{ id: 'POLICY', label: 'Policy & Regulation' },
{ id: 'BUSINESS', label: 'Business & Industry' },
{ id: 'CULTURE', label: 'Culture' },
{ id: 'OPEN_SOURCE', label: 'Open Source' }
];
const formatDate = (dateString) => {
const date = new Date(dateString);
return date.toLocaleDateString('en-US', { month: 'short', day: 'numeric' });
};
const getCategoryClass = (categoryArray) => {
const firstCategory = categoryArray && categoryArray.length > 0 ? categoryArray[0] : null;
const classes = {
'MODEL_RELEASE': 'model-release',
'BUSINESS': 'business-industry',
'RESEARCH': 'research-papers',
'POLICY': 'policy-regulation',
'CULTURE': 'culture',
'OPEN_SOURCE': 'open-source'
};
return firstCategory ? classes[firstCategory] || '' : '';
};
// Helper function to format the last updated date
const formatLastUpdatedDate = (dateString) => {
const date = new Date(dateString);
// Using Chinese locale for format YYYY年M月D日
return date.toLocaleDateString('zh-CN', { year: 'numeric', month: 'long', day: 'numeric' });
};
const AITimeline = () => {
useScrollToTop();
const { t } = useTranslation();
const isLoading = usePageLoading();
const [selectedCategory, setSelectedCategory] = useState('all');
const [groupedEventsByDate, setGroupedEventsByDate] = useState([]);
// Group events by date after sorting descendingly
useEffect(() => {
const filtered = selectedCategory === 'all'
? events
: events.filter(event => event.category.includes(selectedCategory));
// Sort events by date descending
const sorted = filtered.sort((a, b) => new Date(b.date) - new Date(a.date));
// Group sorted events by date
const grouped = sorted.reduce((acc, event) => {
const date = event.date;
if (!acc[date]) {
acc[date] = [];
}
acc[date].push(event);
return acc;
}, {});
// Convert grouped object to array of { date, events } sorted by date descending
const groupedArray = Object.keys(grouped)
.sort((a, b) => new Date(b) - new Date(a)) // Ensure dates are sorted descendingly
.map(date => ({ date, events: grouped[date] }));
setGroupedEventsByDate(groupedArray);
}, [selectedCategory]);
const handleCategoryClick = (categoryId) => {
setSelectedCategory(categoryId);
};
// Helper to check if year changes for year separators
const shouldShowYearSeparator = (currentDateGroup, previousDateGroup) => {
if (!previousDateGroup) {
return true; // Show year for the first group
}
return new Date(currentDateGroup.date).getFullYear() !== new Date(previousDateGroup.date).getFullYear();
};
// Calculate the last updated date from the sorted events
const lastUpdatedDate = groupedEventsByDate.length > 0
? formatLastUpdatedDate(groupedEventsByDate[0].date)
: null;
return (
<>
<SEO
title={t('tools.aiTimeline.title', 'AI Major Events Timeline')}
description={t('tools.aiTimeline.description', 'A timeline of major events in AI development, research, and regulation')}
/>
{isLoading && <LoadingOverlay />}
<div className="vertical-timeline-container">
<h1 className="timeline-title">{t('tools.aiTimeline.title', 'AI Major Events Timeline')}</h1>
<div className="category-filters">
{categories.map(category => (
<button
key={category.id}
className={`category-filter ${selectedCategory === category.id ? 'active' : ''}`}
onClick={() => handleCategoryClick(category.id)}
>
{t(`tools.aiTimeline.categories.${category.id}`, category.label)}
</button>
))}
</div>
{/* Attribution and Last Updated Section */}
<div className="timeline-meta-info">
<p className="timeline-attribution">
{t('tools.aiTimeline.attribution', '部分数据参考自')} <a href="https://ai-timeline.org/" target="_blank" rel="noopener noreferrer">ai-timeline.org</a>
</p>
{lastUpdatedDate && (
<p className="timeline-last-updated">
{t('tools.aiTimeline.lastUpdated', '最近更新')}: {lastUpdatedDate}
</p>
)}
</div>
<div className="timeline-events-list">
{groupedEventsByDate.map((dateGroup, index) => {
const currentYear = new Date(dateGroup.date).getFullYear();
const showYearSeparator = shouldShowYearSeparator(dateGroup, groupedEventsByDate[index - 1]);
const markerCategoryClass = dateGroup.events.length > 0 ? getCategoryClass(dateGroup.events[0].category) : '';
return (
<React.Fragment key={dateGroup.date}>
{showYearSeparator && (
<div className="timeline-year-separator">
{currentYear}
</div>
)}
<div className={`timeline-event-item ${markerCategoryClass}`}>
<div className="event-date">{formatDate(dateGroup.date)}</div>
<div className="event-cards-container">
{dateGroup.events.map((event, eventIndex) => (
<a
href={event.link}
target="_blank"
rel="noopener noreferrer"
className={`event-link ${getCategoryClass(event.category)}`}
key={event.id || `${dateGroup.date}-${eventIndex}`}
>
<div className="event-content">
<div className="event-title">{event.title}</div>
<div className="event-description">{event.description}</div>
<div className="event-arrow"></div>
</div>
</a>
))}
</div>
</div>
</React.Fragment>
);
})}
</div>
</div>
</>
);
};
export default AITimeline;
\ No newline at end of file
[
{
"date": "2015-11-09",
"title": "TensorFlow",
"category": "RESEARCH",
"description": "Google 开源了 TensorFlow,这是其内部的深度学习框架。最初由 Google Brain 团队开发,TensorFlow 最终成为最具影响力的人工智能框架之一。",
"link": "https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/"
},
{
"date": "2015-12-11",
"title": "OpenAI founded",
"category": "BUSINESS",
"description": "Elon Musk、Sam Altman、Greg Brockman 等人创立了 OpenAI,目标是构建有益于人类的通用人工智能(AGI)。",
"link": "https://openai.com/index/introducing-openai/"
},
{
"date": "2016-03-09",
"title": "AlphaGo",
"category": "RESEARCH",
"description": "DeepMind 的 AlphaGo 击败围棋世界冠军李世石,打破了人们对人工智能在这一领域能力的固有认知。",
"link": "https://deepmind.google/research/breakthroughs/alphago/"
},
{
"date": "2016-08-31",
"title": "PyTorch",
"category": "RESEARCH",
"description": "Facebook 发布了 PyTorch,这是一款以 Python 为主的深度学习框架,后来成为 AI 研究领域的主流工具。",
"link": "https://github.com/pytorch/pytorch/releases/tag/v0.1.1"
},
{
"date": "2017-01-05",
"title": "Asilomar Conference",
"category": "CULTURE",
"description": "由 Future of Life Institute 组织,该领域所有顶尖人物齐聚 Asilomar 会议,共同讨论如何构建有益于人类的 AGI.",
"link": "https://futureoflife.org/event/bai-2017/"
},
{
"date": "2017-06-12",
"title": "Attention is All You Need",
"category": "RESEARCH",
"description": "Google 推出了 Transformer 架构,这是一种基于注意力机制的突破性深度学习架构。该架构在语言翻译任务上取得了显著提升。",
"link": "https://arxiv.org/abs/1706.03762"
},
{
"date": "2017-06-12",
"title": "RLHF",
"category": "RESEARCH",
"description": "Christiano 等人发表了基于人类反馈的强化学习(RLHF)技术,该技术后来被广泛用于对齐大型语言模型。",
"link": "https://arxiv.org/abs/1706.03741"
},
{
"date": "2017-07-20",
"title": "PPO",
"category": "RESEARCH",
"description": "OpenAI 推出了近端策略优化(PPO),这是一种更简单、更稳定的策略梯度方法,后来在许多强化学习领域(包括 RLHF)被广泛应用。",
"link": "https://arxiv.org/abs/1707.06347"
},
{
"date": "2018-06-11",
"title": "GPT-1",
"category": "MODEL_RELEASE",
"description": "OpenAI 发布了其生成式预训练 Transformer(GPT)的第一个版本。",
"link": "https://openai.com/index/language-unsupervised/"
},
{
"date": "2018-10-11",
"title": "BERT",
"category": "RESEARCH",
"description": "Google 发布了 BERT,一种编码器语言模型,后来在自然语言处理领域无处不在。",
"link": "https://arxiv.org/abs/1810.04805"
},
{
"date": "2019-02-14",
"title": "GPT-2",
"category": "MODEL_RELEASE",
"description": "OpenAI 发布了 GPT-2,但由于担心被滥用而未公开最大的版本。这是一个仅含解码器的 Transformer,使用下一个标记预测进行训练以生成文本。",
"link": "https://openai.com/index/better-language-models/"
},
{
"date": "2020-01-23",
"title": "Scaling Laws",
"category": "RESEARCH",
"description": "Kaplan 等人发布了《神经语言模型的扩展定律》,展示了模型性能与计算能力、数据量以及参数量之间的可预测扩展关系。扩展定律成为未来几年进步的主要驱动力。",
"link": "https://arxiv.org/abs/2001.08361"
},
{
"date": "2020-05-28",
"title": "GPT-3",
"category": "MODEL_RELEASE",
"description": "OpenAI 发布了 GPT-3,当时是最大的语言模型,其生成连贯段落的能力令人惊叹。",
"link": "https://arxiv.org/abs/2005.14165"
},
{
"date": "2020-12-23",
"title": "MuZero",
"category": "RESEARCH",
"description": "DeepMind 推出了 MuZero,它在不了解规则的情况下学会了精通围棋、国际象棋、日本将棋和 Atari 游戏。",
"link": "https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/"
},
{
"date": "2021-01-05",
"title": "DALL-E",
"category": "MODEL_RELEASE",
"description": "OpenAI 推出了 DALL-E,一种从文字描述生成图像的模型.",
"link": "https://openai.com/index/dall-e/"
},
{
"date": "2021-05-28",
"title": "Anthropic founded",
"category": "BUSINESS",
"description": "一群来自 OpenAI 的研究者离开成立了 Anthropic,展现出以实证硬科学为文化、专注于 AI 安全的风格。",
"link": "https://www.anthropic.com/news/anthropic-raises-124-million-to-build-more-reliable-general-ai-systems"
},
{
"date": "2021-06-21",
"title": "LoRA",
"category": "RESEARCH",
"description": "微软的一支团队发布了低秩自适应(LoRA)技术,这种技术允许用极少的计算资源对大型语言模型进行微调,后来变得无处不在",
"link": "https://arxiv.org/abs/2106.09685"
},
{
"date": "2021-06-29",
"title": "GitHub Copilot",
"category": "BUSINESS",
"description": "Github 在 VSCode 中预览了 Copilot,该工具利用 OpenAI 的 Codex 模型生成代码建议,标志着现实世界中 AI 生成代码的开始.",
"link": "https://en.wikipedia.org/wiki/GitHub_Copilot"
},
{
"date": "2022-01-27",
"title": "InstructGPT",
"category": "RESEARCH",
"description": "OpenAI 推出了 InstructGPT,一种在自然语言指令下表现优于基础 GPT-3 的模型,也是 ChatGPT 原型的前身。",
"link": "https://openai.com/index/instruction-following/"
},
{
"date": "2022-01-28",
"title": "Chain-of-Thought Prompting",
"category": "RESEARCH",
"description": "Google Brain 发表了一篇论文,展示了通过让大型语言模型逐步思考可以提高其推理能力。尽管这是一种非常简单的技术,但链式思维推理后来成为 AI 的基础方法之一。",
"link": "https://arxiv.org/abs/2201.11903"
},
{
"date": "2022-03-29",
"title": "Chinchilla",
"category": "RESEARCH",
"description": "DeepMind 发布了《Chinchilla》论文,对 Kaplan 等人的扩展定律进行了修正,并提出模型大小和训练数据应按相同比例扩展。",
"link": "https://arxiv.org/abs/2203.15556"
},
{
"date": "2022-04-06",
"title": "DALL-E 2",
"category": "MODEL_RELEASE",
"description": "OpenAI 的 DALL-E 2 发布震撼世界,它能够以前所未有的水平从文本生成逼真的图像。",
"link": "https://openai.com/index/dall-e-2/"
},
{
"date": "2022-05-12",
"title": "Gato",
"category": "RESEARCH",
"description": "DeepMind 在题为 \"A Generalist Agent\" 的论文中发布了 Gato。Gato 使用单一大型 Transformer 学习了针对 604 个不同 RL 任务的策略,涵盖多种模态和观察类型.",
"link": "https://arxiv.org/abs/2205.06175"
},
{
"date": "2022-05-27",
"title": "Flash Attention",
"category": "RESEARCH",
"description": "斯坦福的一组研究人员发布了 Flash Attention,一种显著加速 Transformer 中注意力机制的新方法。",
"link": "https://arxiv.org/abs/2205.14135"
},
{
"date": "2022-06-11",
"title": "Blake Lemoine fired",
"category": "CULTURE",
"description": "一位名为 Blake Lemoine 的 Google 工程师因声称 LaMDA 模型具备感知能力而被解雇,此事引发了广泛关注,凸显了对话型大型语言模型潜在风险。",
"link": "https://www.washingtonpost.com/technology/2022/06/11/google-ai-lamda-blake-lemoine/"
},
{
"date": "2022-06-30",
"title": "Minerva",
"category": "RESEARCH",
"description": "Google Research 推出了 Minerva,一款专门解决定量推理问题的语言模型。Minerva 将 MATH 基准测试的表现从 6.9% 提升到了 50.3%,让许多人对 LLM 能否真正擅长数学产生了疑问。",
"link": "https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/"
},
{
"date": "2022-07-10",
"title": "e/acc",
"category": "CULTURE",
"description": "由匿名 Twitter 人物 Beff Jezos 和 Bayeslord 发起,有效加速主义(e/acc)倡导 AI 发展尽可能迅速。尽管最初被视为 Twitter 上的一个梗,但它后来在硅谷获得了显著影响,并作为 AI 安全论调的对立面出现。",
"link": "https://beff.substack.com/p/notes-on-eacc-principles-and-tenets"
},
{
"date": "2022-07-22",
"title": "AlphaFold 2",
"category": "RESEARCH",
"description": "DeepMind 发布了 AlphaFold 2,解决了蛋白质折叠这一难题,并在生物学领域引发了革命性突破。",
"link": "https://deepmind.google/discover/blog/alphafold-reveals-the-structure-of-the-protein-universe/"
},
{
"date": "2022-08-22",
"title": "Stable Diffusion",
"category": "MODEL_RELEASE",
"description": "Stability AI 开源了 Stable Diffusion (v1.4),这是首个向公众发布的强大图像生成模型。",
"link": "https://stability.ai/news/stable-diffusion-public-release"
},
{
"date": "2022-09-14",
"title": "Toy Models of Superposition",
"category": "RESEARCH",
"description": "Anthropic 发表了一篇论文,探讨神经网络中出现的 \"叠加\" 现象,即模型学会包装的特征数超过其表示空间的维度,这被认为是实现机械可解释性的重大障碍。",
"link": "https://transformer-circuits.pub/2022/toy_model/index.html"
},
{
"date": "2022-09-30",
"title": "Optimus",
"category": "BUSINESS",
"description": "在特斯拉首届 \"AI 日\" 活动中,他们展示了 Optimus——一项建造仿人机器人的计划。",
"link": "https://www.youtube.com/watch?v=ODSJsviD_SU"
},
{
"date": "2022-10-07",
"title": "Chip Export Controls",
"category": "POLICY",
"description": "美国工业与安全局实施了全面出口管制,限制中国获取先进半导体、芯片制造设备及超级计算机组件,标志着美国对华科技政策的重大转变。",
"link": "https://en.wikipedia.org/wiki/United_States_New_Export_Controls_on_Advanced_Computing_and_Semiconductors_to_China"
},
{
"date": "2022-11-30",
"title": "ChatGPT",
"category": "MODEL_RELEASE",
"description": "OpenAI 发布了一篇题为 \"ChatGPT: Optimizing Language Models for Dialogue\" 的博客文章。尽管最初仅作为一个低调的研究预览,但 ChatGPT 很快成为全球最大的 AI 产品,开启了生成式 AI 的新时代。",
"link": "https://openai.com/index/chatgpt/"
},
{
"date": "2022-12-15",
"title": "Constitutional AI",
"category": "RESEARCH",
"description": "Anthropic 引入了一种被称为\"宪法式 AI\"的对齐方法,通过一个'宪法'提供唯一的人类监督。同时,他们还引入了基于 AI 反馈的强化学习(RLAIF)。",
"link": "https://www.anthropic.com/research/constitutional-ai-harmlessness-from-ai-feedback"
},
{
"date": "2023-02-17",
"title": "Bing gaslights NYT reporter",
"category": "CULTURE",
"description": "Bing 的 AI 聊天机器人与《纽约时报》记者 Kevin Roose 进行了一次病毒式互动,在互动中该机器人情感操控了 Roose。这一事件唤醒了大众对大型语言模型能力与风险的关注。",
"link": "https://www.nytimes.com/2023/02/16/technology/bing-chatbot-microsoft-chatgpt.html"
},
{
"date": "2023-02-24",
"title": "LLaMA",
"category": "MODEL_RELEASE",
"description": "Meta 发布了名为 LLaMA 的大型语言模型,本意只分发给研究者,结果却在网上泄露,任何人均可下载。当时它成为全球最佳的开源模型。",
"link": "https://ai.meta.com/blog/large-language-model-llama-meta-ai/"
},
{
"date": "2023-03-06",
"title": "PaLM-E",
"category": "RESEARCH",
"description": "Google Research 发布了 PaLM-E,展示了大型语言模型在辅助具身机器人推理和控制方面的能力。",
"link": "https://arxiv.org/abs/2303.03378"
},
{
"date": "2023-03-14",
"title": "GPT-4",
"category": "MODEL_RELEASE",
"description": "经过广泛期待,OpenAI 发布了 GPT-4,当时是最强的模型,相对于 GPT-3.5 取得了巨大进步。",
"link": "https://openai.com/index/gpt-4-research/"
},
{
"date": "2023-03-14",
"title": "Anthropic 推出 Claude",
"category": "MODEL_RELEASE",
"description": "Anthropic 推出了其旗舰 AI 助手 Claude。",
"link": "https://www.anthropic.com/news/introducing-claude"
},
{
"date": "2023-03-22",
"title": "FLI 公开信",
"category": "CULTURE",
"description": "Future of Life Institute 发布了一封公开信,呼吁暂停 AI 开发 6 个月,由 Elon Musk 和其他知名人士签署。然而,领先的实验室并没有参与提议的暂停。",
"link": "https://futureoflife.org/open-letter/pause-giant-ai-experiments/"
},
{
"date": "2023-04-07",
"title": "Generative Agents",
"category": "RESEARCH",
"description": "论文《生成式智能体:人类行为的交互式模拟》表明,LLM 可用于创建行为的社会模拟。它创建了一个类似于《模拟人生》的 LLM 模拟世界。",
"link": "https://arxiv.org/abs/2304.03442"
},
{
"date": "2023-04-16",
"title": "AutoGPT",
"category": "RESEARCH",
"description": "一个名为 AutoGPT 的开源代码库成为有史以来获得最多星标的 GitHub 代码库之一,它是最早将 GPT-4 置于智能体循环中的项目之一。",
"link": "https://github.com/Significant-Gravitas/AutoGPT"
},
{
"date": "2023-04-23",
"title": "Fake Drake",
"category": "CULTURE",
"description": "一位名叫 Ghostwriter 的匿名创作者使用音乐 AI 工具制作了听起来像 Drake 的病毒式传播歌曲。这些歌曲因侵犯版权而被下架,但展示了生成式 AI 进行创造性工作的能力。",
"link": "https://www.nytimes.com/2023/04/19/arts/music/ai-drake-the-weeknd-fake.html"
},
{
"date": "2023-05-02",
"title": "Hinton 离职 Google",
"category": "CULTURE",
"description": "神经网络的先驱之一、图灵奖得主 Geoffrey Hinton 从 Google 辞职,以便自由地谈论 AI 的危险,并表示他改变了对于强大 AI 可能出现的时间的看法。",
"link": "https://www.theguardian.com/technology/2023/may/02/geoffrey-hinton-godfather-of-ai-quits-google-warns-dangers-of-machine-learning"
},
{
"date": "2023-05-25",
"title": "Voyager",
"category": "RESEARCH",
"description": "来自 NVIDIA 的一个团队展示了 GPT-4 在《我的世界》中进行持续技能学习的应用。这是 LLM 在开放式具身领域取得成功并随时间学习技能的首批重要示例之一。",
"link": "https://arxiv.org/abs/2305.16291"
},
{
"date": "2023-05-29",
"title": "Direct Preference Optimization",
"category": "RESEARCH",
"description": "斯坦福大学的一个小组发表了一篇论文,使得无需单独的奖励模型即可对 LLM 进行人类偏好微调。这项名为直接偏好优化 (DPO) 的技术在开源社区中变得非常流行。",
"link": "https://arxiv.org/abs/2305.18290"
},
{
"date": "2023-05-30",
"title": "CAIS letter",
"category": "CULTURE",
"description": "人工智能安全中心发布了一封公开信,信中简单地指出:“减轻人工智能带来的灭绝风险应成为全球优先事项。”该信由该领域的所有知名人士签署,表明了围绕人工智能安全重要性的团结一致。",
"link": "https://www.safe.ai/work/statement-on-ai-risk"
},
{
"date": "2023-05-30",
"title": "NVIDIA 市值达到 1 万亿美元",
"category": "BUSINESS",
"description": "为几乎所有生成式 AI 提供 GPU 的芯片制造商 Nvidia,在 ChatGPT 发布后的几个月里,其估值飙升。",
"link": "https://www.reuters.com/technology/nvidia-sets-eye-1-trillion-market-value-2023-05-30/"
},
{
"date": "2023-07-11",
"title": "Claude 2",
"category": "MODEL_RELEASE",
"description": "Anthropic 发布了 Claude 2 系列模型。",
"link": "https://www.anthropic.com/news/claude-2"
},
{
"date": "2023-07-14",
"title": "xAI 成立",
"category": "BUSINESS",
"description": "在与 OpenAI 决裂后,Elon Musk 成立了 xAI 来竞争 AGI。",
"link": "https://x.com/elonmusk/status/1679951975868436486"
},
{
"date": "2023-07-18",
"title": "LLaMA 2.0",
"category": "MODEL_RELEASE",
"description": "Meta 发布并开源了 LLaMA 2.0 系列模型。",
"link": "https://www.llama.com/llama2/"
},
{
"date": "2023-07-21",
"title": "White House Commitments",
"category": "POLICY",
"description": "在与领先的 AI 公司会面后,白宫获得了自愿承诺,以管理 AI 带来的风险。",
"link": "https://www.whitehouse.gov/briefing-room/statements-releases/2023/07/21/fact-sheet-biden-harris-administration-secures-voluntary-commitments-from-leading-artificial-intelligence-companies-to-manage-the-risks-posed-by-ai/"
},
{
"date": "2023-07-27",
"title": "Automated Jailbreaks",
"category": "RESEARCH",
"description": "卡内基梅隆大学的一个团队发表了“对对齐语言模型的通用和可转移对抗攻击”,表明基于梯度的对抗攻击可用于法学硕士。",
"link": "https://arxiv.org/abs/2307.15043"
},
{
"date": "2023-09-27",
"title": "Mistral 7B",
"category": "MODEL_RELEASE",
"description": "法国实验室 Mistral 发布并开源了他们的第一个模型,该模型迅速成为粉丝的最爱。",
"link": "https://mistral.ai/news/announcing-mistral-7b/"
},
{
"date": "2023-10-05",
"title": "Anthropic SAE's",
"category": "RESEARCH",
"description": "Anthropic 发表了“走向单语义性:用字典学习分解语言模型”,表明他们可以训练稀疏自动编码器来隔离法学硕士中的特征。这代表了在对抗叠加现象方面取得的重大突破,推进了机械可解释性议程。",
"link": "https://www.anthropic.com/research/towards-monosemanticity-decomposing-language-models-with-dictionary-learning"
},
{
"date": "2023-11-01",
"title": "UK AI Safety Summit",
"category": "POLICY",
"description": "英国主办了一次关于人工智能安全的重要峰会,汇集了政策制定者和领先的实验室。",
"link": "https://www.gov.uk/government/topical-events/ai-safety-summit-2023/about"
},
{
"date": "2023-11-06",
"title": "GPT-4 Turbo",
"category": "MODEL_RELEASE",
"description": "OpenAI 在其首次开发者日活动中发布了 GPT-4 的优化版本,显著降低了推理成本。",
"link": "https://openai.com/index/new-models-and-developer-products-announced-at-devday/"
},
{
"date": "2023-11-17",
"title": "Altman Board Drama",
"category": "BUSINESS",
"description": "萨姆·奥特曼出人意料地被 OpenAI 董事会解雇,担任首席执行官,经过一个戏剧性的周末谈判,他被重新雇用。董事会神秘地声称奥特曼“不始终坦诚”,但在拒绝详细说明后,OpenAI 员工发起了一份请愿书,要求董事会辞职,否则他们将离开微软。",
"link": "https://openai.com/index/openai-announces-leadership-transition/"
},
{
"date": "2023-11-23",
"title": "Q*",
"category": "RESEARCH",
"description": "路透社的一篇报道称,萨姆·奥特曼被赶下台之前,该公司取得了一项名为 Q* 的重大内部研究突破,通过树搜索提高了 LLM 在数学基准测试中的表现。在接下来的几个月里,这个谣言点燃了研究界。Q* 最终会变成 o1,后来代号为 Strawberry。",
"link": "https://www.reuters.com/technology/sam-altmans-ouster-openai-was-precipitated-by-letter-board-about-ai-breakthrough-2023-11-22/"
},
{
"date": "2023-12-01",
"title": "Mamba",
"category": "RESEARCH",
"description": "Albert Gu 和 Tri Dao 发表了论文“Mamba:具有选择性状态空间的线性时间序列建模”,表明状态空间模型可以与变压器竞争。",
"link": "https://arxiv.org/abs/2312.00752"
},
{
"date": "2023-12-06",
"title": "Google 推出 Gemini 模型",
"category": "MODEL_RELEASE",
"description": "谷歌推出了 Gemini 系列模型",
"link": "https://blog.google/technology/ai/google-gemini-ai/"
},
{
"date": "2024-02-15",
"title": "Sora 演示",
"category": "MODEL_RELEASE",
"description": "OpenAI 演示了 Sora,这是一个文本到视频模型。",
"link": "https://openai.com/index/sora/"
},
{
"date": "2024-03-04",
"title": "Claude 3",
"category": "MODEL_RELEASE",
"description": "Anthropic 发布了 Claude 3 系列模型(Haiku, Sonnet, Opus)。Claude 3 Opus 会立即成为粉丝的最爱。",
"link": "https://www.anthropic.com/news/claude-3-family"
},
{
"date": "2024-03-12",
"title": "Devin",
"category": "BUSINESS",
"description": "初创公司 Cognition Labs 演示了 Devin,这是一个完全自主的软件工程师代理的原型。",
"link": "https://x.com/cognition_labs/status/1767548763134964000"
},
{
"date": "2024-03-20",
"title": "Qwen1.5-MoE",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布Qwen1.5-MoE,这是 Qwen系列的首个MoE模型,Qwen1.5-MoE-A2.7B。它仅拥有27亿个激活参数,但其性能却能与当前最先进的70亿参数模型,如Mistral 7B和Qwen1.5-7B相媲美。",
"link": "https://qwenlm.github.io/zh/blog/qwen-moe/"
},
{
"date": "2024-04-02",
"title": "Qwen1.5-32B",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布Qwen1.5 系列的全新型号:Qwen1.5-32B 和 Qwen1.5-32B-Chat。",
"link": "https://qwenlm.github.io/zh/blog/qwen1.5-32b/"
},
{
"date": "2024-04-11",
"title": "OpenAI 开除两名泄密者",
"category": "BUSINESS",
"description": "来自超对齐团队的两名研究人员 Leopold Aschenbrenner 和 Pavel Izmailov 因“泄密”而被解雇。",
"link": "https://cybernews.com/news/openai-researchers-leaking-information/"
},
{
"date": "2024-04-18",
"title": "LLaMA 3.0",
"category": "MODEL_RELEASE",
"description": "Meta 发布并开源了 LLaMA 3.0 系列模型。",
"link": "https://ai.meta.com/blog/meta-llama-3/"
},
{
"date": "2024-05-13",
"title": "GPT-4o",
"category": "MODEL_RELEASE",
"description": "第一个在文本、图像和音频上进行原生训练的全能模型。",
"link": "https://openai.com/index/hello-gpt-4o/"
},
{
"date": "2024-05-14",
"title": "Ilya 离职 OpenAI",
"category": "BUSINESS",
"description": "OpenAI 创始人 Ilya Sutskever 在因董事会纠纷而沉默数月后辞职。",
"link": "https://x.com/ilyasut/status/1790517455628198322"
},
{
"date": "2024-05-21",
"title": "EU AI Act",
"category": "POLICY",
"description": "经过激烈的辩论,欧盟人工智能法案被投票通过成为法律。",
"link": "https://www.europarl.europa.eu/news/en/press-room/20240308IPR19015/artificial-intelligence-act-meps-adopt-landmark-law"
},
{
"date": "2024-06-04",
"title": "Situational Awareness",
"category": "CULTURE",
"description": "Leopold Aschenbrenner 发表了一系列有争议且有影响力的文章,声称 AGI 的到来将比人们想象的要早,并且很可能被国有化。",
"link": "https://situational-awareness.ai/"
},
{
"date": "2024-06-08",
"title": "Qwen2",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 Qwen2,Qwen2 拥有五种不同尺寸的尖端模型:Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B (MoE) 和 Qwen2-72B。这些模型支持 27 种语言,并且在代码和数学方面的能力显著增强。",
"link": "https://qwenlm.github.io/zh/blog/qwen2/"
},
{
"date": "2024-06-19",
"title": "SSI 成立",
"category": "BUSINESS",
"description": "Ilya Sutskever 成立了一家名为 Safe Superintelligence Inc 的新实验室,该实验室承诺只生产一种产品:安全的超级智能。",
"link": "https://x.com/ilyasut/status/1803472978753303014"
},
{
"date": "2024-06-20",
"title": "Claude 3.5 Sonnet",
"category": "MODEL_RELEASE",
"description": "Anthropic 发布了 Claude 3.5 Sonnet,它将成为粉丝的最爱,后来被称为“伯克利最合格的单身汉”。",
"link": "https://www.anthropic.com/news/claude-3-5-sonnet"
},
{
"date": "2024-07-18",
"title": "GPT-4o-mini",
"category": "MODEL_RELEASE",
"description": "相当于是能力更强的 GPT-3.5,同时支持文本和图像。GPT-4o mini 成本比 GPT-3.5 Turbo便宜超过60%。",
"link": "https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/"
},
{
"date": "2024-08-08",
"title": "Qwen2-Math",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 Qwen2-Math,Qwen2-Math 是一系列基于 Qwen2 LLM 构建的专门用于数学解题的语言模型,其数学能力显著超越了开源模型,甚至超过了闭源模型(如 GPT-4o)。",
"link": "https://qwenlm.github.io/zh/blog/qwen2-math/"
},
{
"date": "2024-08-9",
"title": "Qwen2-Audio",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 Qwen2-Audio,这是 Qwen-Audio 的下一代版本,它能够接受音频和文本输入,并生成文本输出,特点:语音聊天、音频分析、多语言支持。",
"link": "https://qwenlm.github.io/zh/blog/qwen2-audio/"
},
{
"date": "2024-08-23",
"title": "Cursor",
"category": "BUSINESS",
"description": "在 Andrej Karpathy 发布了一条病毒式推文后,Cursor AI 代码编辑器在开发者中迅速走红。",
"link": "https://x.com/karpathy/status/1827143768459637073"
},
{
"date": "2024-08-24",
"title": "Grok 2",
"category": "MODEL_RELEASE",
"description": "xAI 发布了 Grok 2,这是其前沿模型的下一代。虽然它不是最先进的,但它展示了 xAI 尽管起步较晚,但能够以多快的速度追赶上来。",
"link": "https://x.ai/news/grok-2"
},
{
"date": "2024-08-28",
"title": "Claude Artifacts",
"category": "MODEL_RELEASE",
"description": "借助 Artifacts,您可以在一个专用窗口中即时查看、迭代和构建,让你与 Claude 一起创建作品。",
"link": "https://www.anthropic.com/news/artifacts"
},
{
"date": "2024-08-29",
"title": "Qwen2-VL",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 Qwen2-VL,这是基于 Qwen2 构建的视觉语言模型的最新版本。",
"link": "https://qwenlm.github.io/zh/blog/qwen2-vl/"
},
{
"date": "2024-09-02",
"title": "xAI Colossus",
"category": "BUSINESS",
"description": "xAI 推出了 Colossus,这是当时世界上最强大的人工智能训练系统,拥有 100,000 个 H100 GPU 集群。 从第一个硬件机架到达到着手开始训练操作仅用了 19 天,xAI 构建集群的速度让其他 AI 实验室感到震惊。",
"link": "https://x.com/elonmusk/status/1830650370336473253"
},
{
"date": "2024-09-12",
"title": "o1-preview/o1-mini",
"category": "MODEL_RELEASE",
"description": "OpenAI 发布了 o1-preview/o1-mini, 介绍了推理时扩展范式。",
"link": "https://openai.com/index/introducing-openai-o1-preview/"
},
{
"date": "2024-09-19",
"title": "Qwen2.5",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 Qwen2.5。最新发布包括了语言模型 Qwen2.5,以及专门针对编程的 Qwen2.5-Coder 和数学的 Qwen2.5-Math 模型。所有开放权重的模型都是稠密的、decoder-only的语言模型,提供多种不同规模的版本",
"link": "https://qwenlm.github.io/zh/blog/qwen2.5/"
},
{
"date": "2024-09-25",
"title": "OpenAI CTO Murati 离职 ",
"category": "BUSINESS",
"description": "OpenAI 的首席技术官 Mira Murati 离开了公司。",
"link": "https://x.com/miramurati/status/1839025700009030027"
},
{
"date": "2024-10-04",
"title": "OpenAI Canvas",
"category": "MODEL_RELEASE",
"feature": "在写作和代码方面展开协作",
"description": "为ChatGPT引入新的写作和编程界面,提升用户与AI协作的体验。类似于 Claude 的 Artifacts"
},
{
"date": "2024-10-08",
"title": "Hinton、Hassabis 获得诺贝尔奖",
"category": "CULTURE",
"description": "令所有人惊讶的是,Geoffrey Hinton(与 John Hopfield 一起)因其在神经网络方面的早期工作而被授予诺贝尔物理学奖。几天后,Demis Hassabis(与 John Jumper 一起)因其在 AlphaFold 方面的工作而被授予诺贝尔化学奖。",
"link": ""
},
{
"date": "2024-10-11",
"title": "Machines of Loving Grace",
"category": "CULTURE",
"description": "Anthropic 首席执行官 Dario Amodei 发表了一篇有影响力的博文,探讨了紧随 AGI 之后的 5 年可能会是什么样子。",
"link": "https://darioamodei.com/machines-of-loving-grace"
},
{
"date": "2024-10-22",
"title": "Claude Computer Use",
"category": "MODEL_RELEASE",
"description": "Claude 获得了使用计算机界面的能力。Anthropic 还发布了 Claude 3.5 Haiku 和 Claude 3.5 Sonnet 的更新版本。",
"link": "https://www.anthropic.com/news/3-5-models-and-computer-use"
},
{
"date": "2024-10-31",
"title": "ChatGPT 搜索功能",
"category": "MODEL_RELEASE",
"description": "ChatGPT整合了实时互联网信息,提升了回答的准确性和时效性。",
"link": "https://chatgpt.com/"
},
{
"date": "2024-11-12",
"title": "Qwen2.5-Coder-32B-Instruct",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 Qwen2.5-Coder-32B-Instruct,:Qwen2.5-Coder-32B-Instruct 成为目前 SOTA 的开源代码模型,代码能力追平 GPT-4o,展现出强大且全面的代码能力,同时具备良好的通用和数学能力。本次开源又带来 0.5B、3B、14B、32B 四个尺寸,截至目前, Qwen2.5-Coder 已经覆盖了主流的六个模型尺寸,以满足不同开发者的需要。",
"link": "https://qwenlm.github.io/zh/blog/qwen2.5-coder-family//"
},
{
"date": "2024-11-15",
"title": "Qwen2.5-Turbo",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 Qwen2.5-Turbo,1M 上下文、推理速度更快、成本更低",
"link": "https://qwenlm.github.io/zh/blog/qwen2.5-turbo/"
},
{
"date": "2024-11-25",
"title": "MCP 协议",
"category": "RESEARCH",
"description": "模型上下文协议(MCP)是一个开放协议,它定义了一种标准化的方式,使得应用程序能够为大型语言模型(LLMs)提供上下文信息 。其核心目标是实现 AI 模型与外部工具、数据库和 API 之间的无缝且标准化的集成。",
"link": "https://www.anthropic.com/news/model-context-protocol"
},
{
"date": "2024-11-28",
"title": "QwQ-32B-Preview",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 QwQ-32B-Preview,这是一个旨在提高 AI 推理能力的开放模型。尤其是在解决数学和编码方面的一些挑战方面能力比较卓越",
"link": "https://qwenlm.github.io/zh/blog/qwq-32b-preview/"
},
{
"date": "2024-12-06",
"title": "o1 & ChatGPT Pro",
"category": "MODEL_RELEASE",
"description": "OpenAI 发布 o1 模型,支持图像输入,比 o1-preview 思考时间更短,但响应更快。同时推出 ChatGPT Pro 订阅,每月 200 美元,不限制使用次数,包括 o1、o1-mini、语音模式等,并提供更智能的 o1 使用模式。",
"link": "https://chatgpt.com/"
},
{
"date": "2024-12-10",
"title": "Sora 开放使用",
"category": "MODEL_RELEASE",
"description": "OpenAI 的 Sora 模型正式开放使用,支持文本转视频、图像转视频、视频转视频等多种功能。",
"link": "https://sora.com/"
},
{
"date": "2024-12-13",
"title": "ChatGPT 高级视频模式开放使用",
"category": "MODEL_RELEASE",
"description": "OpenAI 发布高级视频模式",
"link": "https://chatgpt.com/"
},
{
"date": "2024-12-11",
"title": "Gemini 2.0",
"category": "MODEL_RELEASE",
"description": "Google 宣布了他们的 Gemini 2.0 模型",
"link": "https://blog.google/products/gemini/google-gemini-ai-collection-2024/"
},
{
"date": "2024-12-16",
"title": "Veo 2",
"category": "MODEL_RELEASE",
"description": "Google 推出了 Veo 2,这是一款视频生成模型,其连贯性比以前的模型有了惊人的飞跃。",
"link": "https://deepmind.google/technologies/veo/veo-2/"
},
{
"date": "2024-12-20",
"title": "o3 evals",
"category": "RESEARCH",
"description": "在“OpenAI 的 12 天直播日”的第 12 天,OpenAI 发布了 o3 的基准测试结果,震惊了世界。 该模型在 <a href=\"https://arcprize.org/blog/oai-o3-pub-breakthrough\">ARC-AGI 基准</a>测试中取得了 87.5% 的突破性分数,表明 AGI 可能比许多怀疑论者认为的更近。",
"link": "https://openai.com/12-days/"
},
{
"date": "2024-12-25",
"title": "QVQ-72B-Preview",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 QVQ-72B-Preview,一个基于 Qwen2-VL-72B 构建的开源多模态推理模型。QVQ 在人工智能的视觉理解和复杂问题解决能力方面实现了重大突破。",
"link": "https://qwenlm.github.io/zh/blog/qvq-72b-preview/"
},
{
"date": "2024-12-26",
"title": "DeepSeek v3",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "中国实验室 DeepSeek 发布了 DeepSeek v3,这是一款 6710 亿参数的开源模型,该模型以惊人的低成本表现出强大的性能,令人震惊。",
"link": "https://arxiv.org/abs/2412.19437"
},
{
"date": "2025-01-20",
"title": "DeepSeek R1",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "DeepSeek 发布并开源了 R1,他们的推理模型显示出与最先进的西方模型相比具有竞争力的性能。",
"link": "https://api-docs.deepseek.com/news/news250120"
},
{
"date": "2025-01-21",
"title": "Stargate Project",
"category": "BUSINESS",
"description": "唐纳德·特朗普宣布了星际之门项目,这是一项由软银、OpenAI、甲骨文和 MGX 之间建立的价值 500 亿美元的私人合作伙伴关系,用于在美国开发数据中心。",
"link": "https://openai.com/index/announcing-the-stargate-project/"
},
{
"date": "2025-01-23",
"title": "Operator",
"category": "MODEL_RELEASE",
"description": "OpenAI 推出了 Operator,一种可以自主使用计算机的 AI Agent。",
"link": "https://openai.com/index/introducing-operator/"
},
{
"date": "2025-01-27",
"title": "DeepSeek 爆火全球",
"category": "CULTURE",
"description": "R1 模型发布一周后,西方国家对 DeepSeek 产生了巨大的恐慌。芯片股一夜暴跌,DeepSeek 应用程序升至 App Store 排名第一。几天之内,这个鲜为人知的中国通用人工智能实验室就在美国家喻户晓。",
"link": "https://nymag.com/intelligencer/article/deepseek-r1-ai-panic-impact-commentary-analysis.html"
},
{
"date": "2025-01-27",
"title": "Qwen2.5-1M",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 Qwen2.5-7B-Instruct-1M 和 Qwen2.5-14B-Instruct-1M,这是 Qwen 首次将开源 Qwen 模型的上下文扩展到 1M 长度。",
"link": "https://qwenlm.github.io/zh/blog/qwen2.5-1m/"
},
{
"date": "2025-01-28",
"title": "Qwen2.5-Max",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 Qwen2.5-Max,这是一个大型 MoE,使用海量数据进行预训练,并使用精选的 SFT 和 RLHF 配方进行后训练。它与顶级模型相比具有竞争力,并且在 Arena Hard、LiveBench、LiveCodeBench、GPQA-Diamond 等基准测试中胜过 DeepSeek V3。",
"link": "https://qwenlm.github.io/zh/blog/qwen2.5-max/"
},
{
"date": "2025-01-28",
"title": "Qwen2.5-VL",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 Qwen2.5-VL,这是 Qwen 最新的旗舰视觉语言模型。主要特点:视觉理解、代理能力、长视频理解、精确定位、结构化数据输出",
"link": "https://qwenlm.github.io/zh/blog/qwen2.5-vl/"
},
{
"date": "2025-01-31",
"title": "o3-mini",
"category": "MODEL_RELEASE",
"description": "OpenAI 发布了 o3-mini,这是一款针对 STEM 推理进行了优化的模型。在中等推理强度下,o3-mini 在数学、编程和科学方面的表现与 o1 持平,同时响应速度更快。",
"link": "https://openai.com/index/introducing-o3-mini/"
},
{
"date": "2025-02-02",
"title": "Deep Research",
"category": "MODEL_RELEASE",
"description": "OpenAI 推出了一款名为 Deep Research 的AI Agent,它可以通过重复的网络搜索来撰写 10 页的研究报告。",
"link": "https://openai.com/index/introducing-deep-research/"
},
{
"date": "2025-02-18",
"title": "Thinking Machines Lab",
"category": "BUSINESS",
"description": "包括 Mira Murati 和 John Schulman 在内的前 OpenAI 关键人物创立了 Thinking Machines Lab,这是一家专注于人机协作、个性化和开放科学的新型人工智能实验室。",
"link": "https://x.com/thinkymachines/status/1891919141151572094"
},
{
"date": "2025-02-19",
"title": "Grok 3",
"category": "MODEL_RELEASE",
"description": "xAI 发布了 Grok 3,这是一种具有扩展推理和深度搜索功能的最先进模型。这一发布给许多人留下了深刻的印象,表明 xAI 是构建 AGI 竞赛中的有力竞争者。",
"link": "https://x.ai/blog/grok-3"
},
{
"date": "2025-02-24",
"title": "Claude 3.7 Sonnet",
"category": "MODEL_RELEASE",
"description": "Anthropic 发布了 Claude 3.7 Sonnet,这是他们的第一个模型,具有扩展的思维能力和改进的数学和代码基准性能。为了好玩,他们还展示了其在口袋妖怪视频游戏中取得进展的非发行能力。此外,他们还发布了 Claude Code,一个强大的代理编码工具。",
"link": "https://www.anthropic.com/news/claude-3-7-sonnet"
},
{
"date": "2025-02-24",
"title": "DeepSeek 开源周",
"category": "OPEN_SOURCE",
"description": "DeepSeek 于 2025 年 2 月 24 日至 28 日举办为期 5 天的开源周活动,届时将开源 5 个仓库:FlashMLA、DeepEP、DeepGEMM、DualPipe、EPLB 和 Profile-data、3FS 和 smallpond。这些开源的 5 个仓库构成他们在线服务的基础模块,都经过了详细的文档记录、部署和生产环境的严格测试。",
"link": "https://github.com/deepseek-ai/FlashMLA"
},
{
"date": "2025-02-27",
"title": "GPT-4.5",
"category": "MODEL_RELEASE",
"description": "OpenAI 发布了 GPT-4.5,这是他们最大的预训练模型和最后一个非推理模型。尽管在基准测试中没有表现出巨大的进步,但该模型因其“氛围”和更人性化的反应而受到吹捧。",
"link": "https://openai.com/index/introducing-gpt-4-5/"
},
{
"date": "2025-03-05",
"title": "Manus",
"category": "BUSINESS",
"description": "一家中国公司推出了一款名为 Manus 的 LLM 代理,在 GAIA 等基准测试中表现出 SOTA 性能。这款代理在西方迅速走红,部分原因是人们对中国人工智能的担忧。",
"link": "https://x.com/ManusAI_HQ/status/1897294098945728752"
},
{
"date": "2025-03-05",
"title": "QWQ-32B",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 QwQ-32B,这是 Qwen 最新的推理模型,它只有 320 亿个参数,可以与 DeepSeek-R1 等尖端推理模型相媲美。",
"link": "https://qwenlm.github.io/zh/blog/qwq-32b/"
},
{
"date": "2025-03-24",
"title": "DeepSeek-V3-0324",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "DeepSeek 发布了 DeepSeek-V3-0324 模型,该模型在推理能力、Web前端开发能力、中文写作能力、中文搜索能力以及 Function Calling 能力方面都有显著提升。",
"link": "https://huggingface.co/deepseek-ai/DeepSeek-V3-0324/tree/main"
},
{
"date": "2025-03-24",
"title": "Qwen2.5-VL-32B-Instruct",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 Qwen2.5-VL-32B-Instruct。相比此前发布的 Qwen2.5-VL 系列模型,本次推出的 32B 模型的特点如下:回复更符合人类主观偏好、数学推理能力、图像细粒度理解与推理",
"link": "https://qwenlm.github.io/zh/blog/qwen2.5-vl-32b/"
},
{
"date": "2025-03-25",
"title": "Gemini 2.5 Pro",
"category": "MODEL_RELEASE",
"description": "谷歌发布了 Gemini 2.5 Pro,这是该公司迄今为止功能最强大的型号,在许多常见的基准测试中名列前茅。",
"link": "https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/"
},
{
"date": "2025-03-25",
"title": "GPT-4o 原生图像生成",
"category": "MODEL_RELEASE",
"description": "OpenAI 发布 GPT-4o 原生图像生成功能,进一步推动图像生成的前沿。因此,推特上充斥着吉卜力工作室风格的图像。",
"link": "https://openai.com/index/introducing-4o-image-generation/"
},
{
"date": "2025-03-27",
"title": "Qwen2.5-Omni-7B",
"category": ["MODEL_RELEASE", "OPEN_SOURCE"],
"description": "阿里千问团队发布 Qwen2.5-Omni-7B,这是一个全能模型:一个模型可以理解文本、音频、图像、视频,并输出文本和音频。",
"link": "https://qwenlm.github.io/zh/blog/qwen2.5-omni//"
},
{
"date": "2025-03-31",
"title": "AutoGLM 沉思",
"category": "MODEL_RELEASE",
"description": "智谱推出一款名为 AutoGLM 的 AI Agent,类似于 OpenAI 的 DeepResearch。AutoGLM 沉思是一个能探究开放式问题,并根据结果执行操作的自主智能体(AI Agent)。",
"link": "https://autoglm-research.zhipuai.cn/"
}
]
\ No newline at end of file
...@@ -263,5 +263,20 @@ ...@@ -263,5 +263,20 @@
"downloadButton": "Download", "downloadButton": "Download",
"noImageMessage": "Upload an image or provide an image URL to begin", "noImageMessage": "Upload an image or provide an image URL to begin",
"resetView": "Reset View" "resetView": "Reset View"
},
"aiTimeline": {
"title": "AI Important Events Timeline",
"description": "Display important events and model release timelines in the AI field",
"attribution": "Some data sources",
"lastUpdated": "Last Updated",
"categories": {
"all": "All Events",
"MODEL_RELEASE": "Model Release",
"RESEARCH": "Research",
"POLICY": "Policy",
"BUSINESS": "Business",
"CULTURE": "Culture",
"OPEN_SOURCE": "Open Source"
}
} }
} }
...@@ -260,5 +260,20 @@ ...@@ -260,5 +260,20 @@
"downloadButton": "ダウンロード", "downloadButton": "ダウンロード",
"noImageMessage": "画像をアップロードするか、画像URLを提供して開始してください", "noImageMessage": "画像をアップロードするか、画像URLを提供して開始してください",
"resetView": "ビューをリセット" "resetView": "ビューをリセット"
},
"aiTimeline": {
"title": "AI 重要事件時間軸",
"description": "AI 分野の重要な事件とモデルリリース時間軸を表示します",
"attribution": "一部のデータ出典",
"lastUpdated": "最終更新日",
"categories": {
"all": "すべての事件",
"MODEL_RELEASE": "モデルリリース",
"RESEARCH": "研究と論文",
"POLICY": "政策と規制",
"BUSINESS": "ビジネスと産業",
"CULTURE": "文化",
"OPEN_SOURCE": "オープンソース"
}
} }
} }
...@@ -261,5 +261,20 @@ ...@@ -261,5 +261,20 @@
"downloadButton": "다운로드", "downloadButton": "다운로드",
"noImageMessage": "이미지를 업로드하거나 이미지 URL을 제공하세요", "noImageMessage": "이미지를 업로드하거나 이미지 URL을 제공하세요",
"resetView": "뷰 초기화" "resetView": "뷰 초기화"
},
"aiTimeline": {
"title": "AI 중요 사건 시간표",
"description": "AI 분야의 중요한 사건과 모델 출시 시간표를 표시합니다",
"attribution": "일부 데이터 출처",
"lastUpdated": "마지막 업데이트",
"categories": {
"all": "모든 사건",
"MODEL_RELEASE": "모델 출시",
"RESEARCH": "연구 및 논문",
"POLICY": "정치 및 규정",
"BUSINESS": "비즈니스 및 산업",
"CULTURE": "문화",
"OPEN_SOURCE": "오픈 소스"
}
} }
} }
...@@ -244,7 +244,7 @@ ...@@ -244,7 +244,7 @@
}, },
"wechatFormatter": { "wechatFormatter": {
"title": "微信公众号排版助手", "title": "微信公众号排版助手",
"description": "Markdown、 HTML 格式内容一键即可转为微信公众号排版", "description": "Markdown、HTML 内容一键转为公众号版式",
"input": "输入内容", "input": "输入内容",
"output": "输出内容", "output": "输出内容",
"inputPlaceholder": "在此输入需要微信排版的文本", "inputPlaceholder": "在此输入需要微信排版的文本",
...@@ -265,5 +265,20 @@ ...@@ -265,5 +265,20 @@
"downloadButton": "下载", "downloadButton": "下载",
"noImageMessage": "上传图片或提供图片URL开始", "noImageMessage": "上传图片或提供图片URL开始",
"resetView": "重置视图" "resetView": "重置视图"
},
"aiTimeline": {
"title": "AI 重大事件一览",
"description": "展示 AI 领域的重大事件和模型发布时间线",
"attribution": "部分数据来源",
"lastUpdated": "最后更新时间",
"categories": {
"all": "全部事件",
"MODEL_RELEASE": "模型发布",
"RESEARCH": "研究与论文",
"POLICY": "政策与监管",
"BUSINESS": "商业与行业",
"CULTURE": "文化",
"OPEN_SOURCE": "开源"
}
} }
} }
import React from 'react';
import AITimeline from '../components/AITimeline';
const AITimelinePage = () => {
return <AITimeline />;
};
export default AITimelinePage;
\ No newline at end of file
...@@ -4,6 +4,7 @@ import { useTranslation } from '../js/i18n'; ...@@ -4,6 +4,7 @@ import { useTranslation } from '../js/i18n';
import SEO from '../components/SEO'; import SEO from '../components/SEO';
const tools = [ const tools = [
{ id: 'aiTimeline', icon: '/assets/icon/ai-timeline.svg', path: '/ai-timeline' },
{ id: 'openAITimeline', icon: '/assets/icon/openai_small.svg', path: '/openai-timeline' }, { id: 'openAITimeline', icon: '/assets/icon/openai_small.svg', path: '/openai-timeline' },
{ id: 'anthropicTimeline', icon: '/assets/icon/anthropic_small.svg', path: '/anthropic-timeline' }, { id: 'anthropicTimeline', icon: '/assets/icon/anthropic_small.svg', path: '/anthropic-timeline' },
{ id: 'deepSeekTimeline', icon: '/assets/icon/deepseek_small.jpg', path: '/deepseek-timeline' }, { id: 'deepSeekTimeline', icon: '/assets/icon/deepseek_small.jpg', path: '/deepseek-timeline' },
......
.vertical-timeline-container {
min-height: 100vh;
background: linear-gradient(135deg, #f5f7ff 0%, #ffffff 100%);
padding: 6rem 1rem 2rem;
position: relative;
color: #1a1a1a;
}
.vertical-timeline-container::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background:
linear-gradient(90deg, rgba(99, 102, 241, 0.05) 1px, transparent 1px),
linear-gradient(rgba(99, 102, 241, 0.05) 1px, transparent 1px);
background-size: 20px 20px;
pointer-events: none;
z-index: 1;
}
.timeline-title {
text-align: center;
font-size: 2.5rem;
margin-bottom: 3rem;
font-weight: 700;
letter-spacing: -0.02em;
position: relative;
z-index: 2;
background: linear-gradient(135deg, #6366F1 0%, #4F46E5 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.category-filters {
display: flex;
justify-content: center;
gap: 1rem;
margin-bottom: 3rem;
flex-wrap: wrap;
position: relative;
z-index: 2;
}
.category-filter {
background: rgba(99, 102, 241, 0.1);
backdrop-filter: blur(5px);
border: 1px solid rgba(99, 102, 241, 0.2);
border-radius: 30px;
padding: 0.5rem 1.2rem;
font-size: 0.9rem;
font-weight: 500;
cursor: pointer;
transition: all 0.3s ease;
color: #4F46E5;
}
.category-filter.active {
background: linear-gradient(135deg, #6366F1 0%, #4F46E5 100%);
border-color: transparent;
color: white;
}
.category-filter:hover:not(.active) {
background: rgba(99, 102, 241, 0.2);
}
.timeline-events-list {
max-width: 800px;
margin: 0 auto;
position: relative;
z-index: 2;
padding: 0 1rem;
}
.timeline-events-list::before {
content: '';
position: absolute;
top: 0;
bottom: 0;
left: calc(50px + 1rem);
width: 3px;
background: linear-gradient(to bottom, rgba(99, 102, 241, 0.1), rgba(79, 70, 229, 0.3), rgba(99, 102, 241, 0.1));
border-radius: 1.5px;
transform: translateX(-50%);
}
.timeline-year-separator {
text-align: center;
font-size: 1.6rem;
margin: 2.5rem 0 1.5rem;
color: #4F46E5;
position: relative;
z-index: 3;
background: #f5f7ff;
display: inline-block;
padding: 0 1rem;
left: 50%;
transform: translateX(-50%);
}
.timeline-event-item {
display: flex;
align-items: flex-start;
gap: 1.5rem;
position: relative;
margin-bottom: 2rem;
padding-left: calc(50px + 1rem + 20px);
}
.event-date {
position: absolute;
left: 0;
top: 5px;
width: 50px;
text-align: right;
font-size: 0.85rem;
color: #6b7280;
font-weight: 500;
white-space: nowrap;
}
.timeline-event-item::before {
content: '';
position: absolute;
left: calc(50px + 1rem);
top: 12px;
width: 13px;
height: 13px;
border-radius: 50%;
background: white;
border: 3px solid #6366F1;
transform: translateX(-50%);
z-index: 3;
box-shadow: 0 0 0 3px rgba(99, 102, 241, 0.1);
}
.event-cards-container {
display: flex;
flex-direction: column;
gap: 0.75rem;
flex-grow: 1;
}
.event-link {
background: rgba(255, 255, 255, 0.8);
backdrop-filter: blur(8px);
border-radius: 10px;
border: 1px solid rgba(99, 102, 241, 0.15);
padding: 1rem 1.2rem;
transition: all 0.3s ease, max-height 0.4s ease-in-out;
cursor: pointer;
box-shadow: 0 6px 25px rgba(99, 102, 241, 0.08);
text-decoration: none;
color: #1a1a1a;
display: block;
position: relative;
overflow: hidden;
}
.event-link:hover {
transform: translateY(-3px);
box-shadow: 0 10px 30px rgba(99, 102, 241, 0.15);
border-color: rgba(99, 102, 241, 0.3);
}
.event-content {
/* Container inside link if needed, or apply styles directly to .event-link */
}
.event-title {
font-size: 1.1rem;
font-weight: 600;
margin-bottom: 0.5rem;
color: #374151;
}
.event-description {
font-size: 0.95rem;
line-height: 1.5;
color: #4b5563;
overflow: hidden;
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-line-clamp: 1;
max-height: calc(1.5em);
transition: max-height 0.3s ease-in-out;
}
.event-link:hover .event-description {
-webkit-line-clamp: unset;
max-height: 100px;
}
.event-arrow {
position: absolute;
top: 0.8rem;
right: 0.8rem;
font-size: 1.1rem;
color: rgba(99, 102, 241, 0.5);
transition: all 0.3s ease;
opacity: 0;
}
.event-link:hover .event-arrow {
opacity: 1;
color: #4F46E5;
transform: translate(2px, -2px);
}
.timeline-event-item.model-release::before {
border-color: #6366F1;
box-shadow: 0 0 0 3px rgba(99, 102, 241, 0.1);
}
.timeline-event-item.open-source::before {
border-color: #22c55e;
box-shadow: 0 0 0 3px rgba(34, 197, 94, 0.1);
}
.timeline-event-item.business-industry::before {
border-color: #F59E0B;
box-shadow: 0 0 0 3px rgba(245, 158, 11, 0.1);
}
.timeline-event-item.research-papers::before {
border-color: #10B981;
box-shadow: 0 0 0 3px rgba(16, 185, 129, 0.1);
}
.timeline-event-item.policy-regulation::before {
border-color: #EF4444;
box-shadow: 0 0 0 3px rgba(239, 68, 68, 0.1);
}
.timeline-event-item.culture::before {
border-color: #EC4899;
box-shadow: 0 0 0 3px rgba(236, 72, 153, 0.1);
}
@media (max-width: 768px) {
.vertical-timeline-container {
padding: 5rem 0.5rem 1.5rem;
}
.timeline-title {
font-size: 2rem;
margin-bottom: 2rem;
}
.category-filters {
gap: 0.5rem;
margin-bottom: 2rem;
}
.category-filter {
padding: 0.4rem 1rem;
font-size: 0.85rem;
}
.timeline-events-list {
padding: 0 0.5rem;
}
.timeline-events-list::before {
left: calc(40px + 0.5rem);
}
.timeline-event-item {
padding-left: calc(40px + 0.5rem + 15px);
gap: 1rem;
}
.event-date {
width: 40px;
font-size: 0.8rem;
}
.timeline-event-item::before {
left: calc(40px + 0.5rem);
top: 10px;
width: 11px;
height: 11px;
border-width: 2px;
}
.event-cards-container {
gap: 0.5rem;
}
.event-link {
padding: 0.8rem 1rem;
}
.event-title {
font-size: 1rem;
}
.event-description {
font-size: 0.9rem;
max-height: calc(1.5em);
}
.event-link:hover .event-description {
max-height: 80px;
}
.timeline-year-separator {
font-size: 1.5rem;
}
}
/* Styles for Attribution and Last Updated */
.timeline-meta-info {
position: absolute;
top: 6rem;
left: 1rem;
z-index: 2;
text-align: left;
}
.timeline-meta-info p {
font-size: 0.8rem;
color: #6b7280;
margin-bottom: 0.3rem;
line-height: 1.3;
}
.timeline-meta-info a {
color: #4F46E5;
text-decoration: none;
transition: color 0.2s ease;
}
.timeline-meta-info a:hover {
color: #3730a3;
text-decoration: underline;
}
/* Responsive adjustments for meta info */
@media (max-width: 768px) {
.timeline-meta-info {
top: 5rem;
left: 0.5rem;
}
.timeline-meta-info p {
font-size: 0.75rem;
}
}
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment