Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
A
ai-box
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
青山
ai-box
Commits
084937e6
Commit
084937e6
authored
Mar 31, 2025
by
fisherdaddy
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
feat: Add AI Timeline page and localization support in multiple languages
parent
a329b0f9
Changes
11
Hide whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
1500 additions
and
2 deletions
+1500
-2
ai-timeline.svg
public/assets/icon/ai-timeline.svg
+26
-0
App.jsx
src/App.jsx
+2
-0
AITimeline.jsx
src/components/AITimeline.jsx
+172
-0
ai-events.json
src/data/ai-events.json
+877
-0
tools.json
src/locales/en/tools.json
+15
-0
tools.json
src/locales/ja/tools.json
+15
-0
tools.json
src/locales/ko/tools.json
+16
-1
tools.json
src/locales/zh/tools.json
+16
-1
AITimelinePage.jsx
src/pages/AITimelinePage.jsx
+8
-0
Blog.jsx
src/pages/Blog.jsx
+1
-0
HorizontalTimeline.css
src/styles/HorizontalTimeline.css
+352
-0
No files found.
public/assets/icon/ai-timeline.svg
0 → 100644
View file @
084937e6
<?xml version="1.0" encoding="UTF-8"?>
<svg
width=
"24"
height=
"24"
viewBox=
"0 0 24 24"
fill=
"none"
xmlns=
"http://www.w3.org/2000/svg"
>
<!-- Vertical timeline bar -->
<rect
x=
"4"
y=
"3"
width=
"3"
height=
"18"
rx=
"1.5"
fill=
"#6366F1"
/>
<!-- Timeline events -->
<circle
cx=
"16"
cy=
"6"
r=
"3"
fill=
"#818CF8"
/>
<circle
cx=
"16"
cy=
"12"
r=
"3"
fill=
"#4F46E5"
/>
<circle
cx=
"16"
cy=
"18"
r=
"3"
fill=
"#6366F1"
/>
<!-- Connecting lines -->
<path
d=
"M7 6H13"
stroke=
"#818CF8"
stroke-width=
"2"
stroke-linecap=
"round"
/>
<path
d=
"M7 12H13"
stroke=
"#4F46E5"
stroke-width=
"2"
stroke-linecap=
"round"
/>
<path
d=
"M7 18H13"
stroke=
"#6366F1"
stroke-width=
"2"
stroke-linecap=
"round"
/>
<!-- AI circuit elements inside the nodes -->
<path
d=
"M15 6H17"
stroke=
"white"
stroke-width=
"1"
stroke-linecap=
"round"
/>
<path
d=
"M16 5V7"
stroke=
"white"
stroke-width=
"1"
stroke-linecap=
"round"
/>
<path
d=
"M15 12L17 12"
stroke=
"white"
stroke-width=
"1"
stroke-linecap=
"round"
/>
<path
d=
"M15.5 11L16.5 13"
stroke=
"white"
stroke-width=
"1"
stroke-linecap=
"round"
/>
<path
d=
"M16.5 11L15.5 13"
stroke=
"white"
stroke-width=
"1"
stroke-linecap=
"round"
/>
<path
d=
"M14.5 17.5L17.5 18.5"
stroke=
"white"
stroke-width=
"1"
stroke-linecap=
"round"
/>
<path
d=
"M14.5 18.5L17.5 17.5"
stroke=
"white"
stroke-width=
"1"
stroke-linecap=
"round"
/>
</svg>
\ No newline at end of file
src/App.jsx
View file @
084937e6
...
...
@@ -32,6 +32,7 @@ const DrugsList = lazy(() => import('./components/DrugsList'));
const
DeepSeekTimeline
=
lazy
(()
=>
import
(
'./components/DeepSeekTimeline'
));
const
WechatFormatter
=
lazy
(()
=>
import
(
'./components/WechatFormatter'
));
const
ImageAnnotator
=
lazy
(()
=>
import
(
'./components/ImageAnnotator'
));
const
AITimelinePage
=
lazy
(()
=>
import
(
'./pages/AITimelinePage'
));
function
App
()
{
return
(
...
...
@@ -71,6 +72,7 @@ function App() {
<
Route
path=
"/deepseek-timeline"
element=
{
<
DeepSeekTimeline
/>
}
/>
<
Route
path=
"/wechat-formatter"
element=
{
<
WechatFormatter
/>
}
/>
<
Route
path=
"/image-annotator"
element=
{
<
ImageAnnotator
/>
}
/>
<
Route
path=
"/ai-timeline"
element=
{
<
AITimelinePage
/>
}
/>
<
Route
path=
"*"
element=
{
<
NotFound
/>
}
/>
</
Routes
>
</
Suspense
>
...
...
src/components/AITimeline.jsx
0 → 100644
View file @
084937e6
import
React
,
{
useState
,
useEffect
}
from
'react'
;
import
{
useScrollToTop
}
from
'../hooks/useScrollToTop'
;
import
'../styles/HorizontalTimeline.css'
;
import
events
from
'../data/ai-events.json'
;
import
SEO
from
'./SEO'
;
import
{
useTranslation
}
from
'../js/i18n'
;
import
{
usePageLoading
}
from
'../hooks/usePageLoading'
;
import
LoadingOverlay
from
'./LoadingOverlay'
;
const
categories
=
[
{
id
:
'all'
,
label
:
'All Events'
},
{
id
:
'MODEL_RELEASE'
,
label
:
'Model Release'
},
{
id
:
'RESEARCH'
,
label
:
'Research & Papers'
},
{
id
:
'POLICY'
,
label
:
'Policy & Regulation'
},
{
id
:
'BUSINESS'
,
label
:
'Business & Industry'
},
{
id
:
'CULTURE'
,
label
:
'Culture'
},
{
id
:
'OPEN_SOURCE'
,
label
:
'Open Source'
}
];
const
formatDate
=
(
dateString
)
=>
{
const
date
=
new
Date
(
dateString
);
return
date
.
toLocaleDateString
(
'en-US'
,
{
month
:
'short'
,
day
:
'numeric'
});
};
const
getCategoryClass
=
(
categoryArray
)
=>
{
const
firstCategory
=
categoryArray
&&
categoryArray
.
length
>
0
?
categoryArray
[
0
]
:
null
;
const
classes
=
{
'MODEL_RELEASE'
:
'model-release'
,
'BUSINESS'
:
'business-industry'
,
'RESEARCH'
:
'research-papers'
,
'POLICY'
:
'policy-regulation'
,
'CULTURE'
:
'culture'
,
'OPEN_SOURCE'
:
'open-source'
};
return
firstCategory
?
classes
[
firstCategory
]
||
''
:
''
;
};
// Helper function to format the last updated date
const
formatLastUpdatedDate
=
(
dateString
)
=>
{
const
date
=
new
Date
(
dateString
);
// Using Chinese locale for format YYYY年M月D日
return
date
.
toLocaleDateString
(
'zh-CN'
,
{
year
:
'numeric'
,
month
:
'long'
,
day
:
'numeric'
});
};
const
AITimeline
=
()
=>
{
useScrollToTop
();
const
{
t
}
=
useTranslation
();
const
isLoading
=
usePageLoading
();
const
[
selectedCategory
,
setSelectedCategory
]
=
useState
(
'all'
);
const
[
groupedEventsByDate
,
setGroupedEventsByDate
]
=
useState
([]);
// Group events by date after sorting descendingly
useEffect
(()
=>
{
const
filtered
=
selectedCategory
===
'all'
?
events
:
events
.
filter
(
event
=>
event
.
category
.
includes
(
selectedCategory
));
// Sort events by date descending
const
sorted
=
filtered
.
sort
((
a
,
b
)
=>
new
Date
(
b
.
date
)
-
new
Date
(
a
.
date
));
// Group sorted events by date
const
grouped
=
sorted
.
reduce
((
acc
,
event
)
=>
{
const
date
=
event
.
date
;
if
(
!
acc
[
date
])
{
acc
[
date
]
=
[];
}
acc
[
date
].
push
(
event
);
return
acc
;
},
{});
// Convert grouped object to array of { date, events } sorted by date descending
const
groupedArray
=
Object
.
keys
(
grouped
)
.
sort
((
a
,
b
)
=>
new
Date
(
b
)
-
new
Date
(
a
))
// Ensure dates are sorted descendingly
.
map
(
date
=>
({
date
,
events
:
grouped
[
date
]
}));
setGroupedEventsByDate
(
groupedArray
);
},
[
selectedCategory
]);
const
handleCategoryClick
=
(
categoryId
)
=>
{
setSelectedCategory
(
categoryId
);
};
// Helper to check if year changes for year separators
const
shouldShowYearSeparator
=
(
currentDateGroup
,
previousDateGroup
)
=>
{
if
(
!
previousDateGroup
)
{
return
true
;
// Show year for the first group
}
return
new
Date
(
currentDateGroup
.
date
).
getFullYear
()
!==
new
Date
(
previousDateGroup
.
date
).
getFullYear
();
};
// Calculate the last updated date from the sorted events
const
lastUpdatedDate
=
groupedEventsByDate
.
length
>
0
?
formatLastUpdatedDate
(
groupedEventsByDate
[
0
].
date
)
:
null
;
return
(
<>
<
SEO
title=
{
t
(
'tools.aiTimeline.title'
,
'AI Major Events Timeline'
)
}
description=
{
t
(
'tools.aiTimeline.description'
,
'A timeline of major events in AI development, research, and regulation'
)
}
/>
{
isLoading
&&
<
LoadingOverlay
/>
}
<
div
className=
"vertical-timeline-container"
>
<
h1
className=
"timeline-title"
>
{
t
(
'tools.aiTimeline.title'
,
'AI Major Events Timeline'
)
}
</
h1
>
<
div
className=
"category-filters"
>
{
categories
.
map
(
category
=>
(
<
button
key=
{
category
.
id
}
className=
{
`category-filter ${selectedCategory === category.id ? 'active' : ''}`
}
onClick=
{
()
=>
handleCategoryClick
(
category
.
id
)
}
>
{
t
(
`tools.aiTimeline.categories.${category.id}`
,
category
.
label
)
}
</
button
>
))
}
</
div
>
{
/* Attribution and Last Updated Section */
}
<
div
className=
"timeline-meta-info"
>
<
p
className=
"timeline-attribution"
>
{
t
(
'tools.aiTimeline.attribution'
,
'部分数据参考自'
)
}
<
a
href=
"https://ai-timeline.org/"
target=
"_blank"
rel=
"noopener noreferrer"
>
ai-timeline.org
</
a
>
</
p
>
{
lastUpdatedDate
&&
(
<
p
className=
"timeline-last-updated"
>
{
t
(
'tools.aiTimeline.lastUpdated'
,
'最近更新'
)
}
:
{
lastUpdatedDate
}
</
p
>
)
}
</
div
>
<
div
className=
"timeline-events-list"
>
{
groupedEventsByDate
.
map
((
dateGroup
,
index
)
=>
{
const
currentYear
=
new
Date
(
dateGroup
.
date
).
getFullYear
();
const
showYearSeparator
=
shouldShowYearSeparator
(
dateGroup
,
groupedEventsByDate
[
index
-
1
]);
const
markerCategoryClass
=
dateGroup
.
events
.
length
>
0
?
getCategoryClass
(
dateGroup
.
events
[
0
].
category
)
:
''
;
return
(
<
React
.
Fragment
key=
{
dateGroup
.
date
}
>
{
showYearSeparator
&&
(
<
div
className=
"timeline-year-separator"
>
{
currentYear
}
</
div
>
)
}
<
div
className=
{
`timeline-event-item ${markerCategoryClass}`
}
>
<
div
className=
"event-date"
>
{
formatDate
(
dateGroup
.
date
)
}
</
div
>
<
div
className=
"event-cards-container"
>
{
dateGroup
.
events
.
map
((
event
,
eventIndex
)
=>
(
<
a
href=
{
event
.
link
}
target=
"_blank"
rel=
"noopener noreferrer"
className=
{
`event-link ${getCategoryClass(event.category)}`
}
key=
{
event
.
id
||
`${dateGroup.date}-${eventIndex}`
}
>
<
div
className=
"event-content"
>
<
div
className=
"event-title"
>
{
event
.
title
}
</
div
>
<
div
className=
"event-description"
>
{
event
.
description
}
</
div
>
<
div
className=
"event-arrow"
>
↗
</
div
>
</
div
>
</
a
>
))
}
</
div
>
</
div
>
</
React
.
Fragment
>
);
})
}
</
div
>
</
div
>
</>
);
};
export
default
AITimeline
;
\ No newline at end of file
src/data/ai-events.json
0 → 100644
View file @
084937e6
[
{
"date"
:
"2015-11-09"
,
"title"
:
"TensorFlow"
,
"category"
:
"RESEARCH"
,
"description"
:
"Google 开源了 TensorFlow,这是其内部的深度学习框架。最初由 Google Brain 团队开发,TensorFlow 最终成为最具影响力的人工智能框架之一。"
,
"link"
:
"https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/"
},
{
"date"
:
"2015-12-11"
,
"title"
:
"OpenAI founded"
,
"category"
:
"BUSINESS"
,
"description"
:
"Elon Musk、Sam Altman、Greg Brockman 等人创立了 OpenAI,目标是构建有益于人类的通用人工智能(AGI)。"
,
"link"
:
"https://openai.com/index/introducing-openai/"
},
{
"date"
:
"2016-03-09"
,
"title"
:
"AlphaGo"
,
"category"
:
"RESEARCH"
,
"description"
:
"DeepMind 的 AlphaGo 击败围棋世界冠军李世石,打破了人们对人工智能在这一领域能力的固有认知。"
,
"link"
:
"https://deepmind.google/research/breakthroughs/alphago/"
},
{
"date"
:
"2016-08-31"
,
"title"
:
"PyTorch"
,
"category"
:
"RESEARCH"
,
"description"
:
"Facebook 发布了 PyTorch,这是一款以 Python 为主的深度学习框架,后来成为 AI 研究领域的主流工具。"
,
"link"
:
"https://github.com/pytorch/pytorch/releases/tag/v0.1.1"
},
{
"date"
:
"2017-01-05"
,
"title"
:
"Asilomar Conference"
,
"category"
:
"CULTURE"
,
"description"
:
"由 Future of Life Institute 组织,该领域所有顶尖人物齐聚 Asilomar 会议,共同讨论如何构建有益于人类的 AGI."
,
"link"
:
"https://futureoflife.org/event/bai-2017/"
},
{
"date"
:
"2017-06-12"
,
"title"
:
"Attention is All You Need"
,
"category"
:
"RESEARCH"
,
"description"
:
"Google 推出了 Transformer 架构,这是一种基于注意力机制的突破性深度学习架构。该架构在语言翻译任务上取得了显著提升。"
,
"link"
:
"https://arxiv.org/abs/1706.03762"
},
{
"date"
:
"2017-06-12"
,
"title"
:
"RLHF"
,
"category"
:
"RESEARCH"
,
"description"
:
"Christiano 等人发表了基于人类反馈的强化学习(RLHF)技术,该技术后来被广泛用于对齐大型语言模型。"
,
"link"
:
"https://arxiv.org/abs/1706.03741"
},
{
"date"
:
"2017-07-20"
,
"title"
:
"PPO"
,
"category"
:
"RESEARCH"
,
"description"
:
"OpenAI 推出了近端策略优化(PPO),这是一种更简单、更稳定的策略梯度方法,后来在许多强化学习领域(包括 RLHF)被广泛应用。"
,
"link"
:
"https://arxiv.org/abs/1707.06347"
},
{
"date"
:
"2018-06-11"
,
"title"
:
"GPT-1"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 发布了其生成式预训练 Transformer(GPT)的第一个版本。"
,
"link"
:
"https://openai.com/index/language-unsupervised/"
},
{
"date"
:
"2018-10-11"
,
"title"
:
"BERT"
,
"category"
:
"RESEARCH"
,
"description"
:
"Google 发布了 BERT,一种编码器语言模型,后来在自然语言处理领域无处不在。"
,
"link"
:
"https://arxiv.org/abs/1810.04805"
},
{
"date"
:
"2019-02-14"
,
"title"
:
"GPT-2"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 发布了 GPT-2,但由于担心被滥用而未公开最大的版本。这是一个仅含解码器的 Transformer,使用下一个标记预测进行训练以生成文本。"
,
"link"
:
"https://openai.com/index/better-language-models/"
},
{
"date"
:
"2020-01-23"
,
"title"
:
"Scaling Laws"
,
"category"
:
"RESEARCH"
,
"description"
:
"Kaplan 等人发布了《神经语言模型的扩展定律》,展示了模型性能与计算能力、数据量以及参数量之间的可预测扩展关系。扩展定律成为未来几年进步的主要驱动力。"
,
"link"
:
"https://arxiv.org/abs/2001.08361"
},
{
"date"
:
"2020-05-28"
,
"title"
:
"GPT-3"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 发布了 GPT-3,当时是最大的语言模型,其生成连贯段落的能力令人惊叹。"
,
"link"
:
"https://arxiv.org/abs/2005.14165"
},
{
"date"
:
"2020-12-23"
,
"title"
:
"MuZero"
,
"category"
:
"RESEARCH"
,
"description"
:
"DeepMind 推出了 MuZero,它在不了解规则的情况下学会了精通围棋、国际象棋、日本将棋和 Atari 游戏。"
,
"link"
:
"https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/"
},
{
"date"
:
"2021-01-05"
,
"title"
:
"DALL-E"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 推出了 DALL-E,一种从文字描述生成图像的模型."
,
"link"
:
"https://openai.com/index/dall-e/"
},
{
"date"
:
"2021-05-28"
,
"title"
:
"Anthropic founded"
,
"category"
:
"BUSINESS"
,
"description"
:
"一群来自 OpenAI 的研究者离开成立了 Anthropic,展现出以实证硬科学为文化、专注于 AI 安全的风格。"
,
"link"
:
"https://www.anthropic.com/news/anthropic-raises-124-million-to-build-more-reliable-general-ai-systems"
},
{
"date"
:
"2021-06-21"
,
"title"
:
"LoRA"
,
"category"
:
"RESEARCH"
,
"description"
:
"微软的一支团队发布了低秩自适应(LoRA)技术,这种技术允许用极少的计算资源对大型语言模型进行微调,后来变得无处不在"
,
"link"
:
"https://arxiv.org/abs/2106.09685"
},
{
"date"
:
"2021-06-29"
,
"title"
:
"GitHub Copilot"
,
"category"
:
"BUSINESS"
,
"description"
:
"Github 在 VSCode 中预览了 Copilot,该工具利用 OpenAI 的 Codex 模型生成代码建议,标志着现实世界中 AI 生成代码的开始."
,
"link"
:
"https://en.wikipedia.org/wiki/GitHub_Copilot"
},
{
"date"
:
"2022-01-27"
,
"title"
:
"InstructGPT"
,
"category"
:
"RESEARCH"
,
"description"
:
"OpenAI 推出了 InstructGPT,一种在自然语言指令下表现优于基础 GPT-3 的模型,也是 ChatGPT 原型的前身。"
,
"link"
:
"https://openai.com/index/instruction-following/"
},
{
"date"
:
"2022-01-28"
,
"title"
:
"Chain-of-Thought Prompting"
,
"category"
:
"RESEARCH"
,
"description"
:
"Google Brain 发表了一篇论文,展示了通过让大型语言模型逐步思考可以提高其推理能力。尽管这是一种非常简单的技术,但链式思维推理后来成为 AI 的基础方法之一。"
,
"link"
:
"https://arxiv.org/abs/2201.11903"
},
{
"date"
:
"2022-03-29"
,
"title"
:
"Chinchilla"
,
"category"
:
"RESEARCH"
,
"description"
:
"DeepMind 发布了《Chinchilla》论文,对 Kaplan 等人的扩展定律进行了修正,并提出模型大小和训练数据应按相同比例扩展。"
,
"link"
:
"https://arxiv.org/abs/2203.15556"
},
{
"date"
:
"2022-04-06"
,
"title"
:
"DALL-E 2"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 的 DALL-E 2 发布震撼世界,它能够以前所未有的水平从文本生成逼真的图像。"
,
"link"
:
"https://openai.com/index/dall-e-2/"
},
{
"date"
:
"2022-05-12"
,
"title"
:
"Gato"
,
"category"
:
"RESEARCH"
,
"description"
:
"DeepMind 在题为
\"
A Generalist Agent
\"
的论文中发布了 Gato。Gato 使用单一大型 Transformer 学习了针对 604 个不同 RL 任务的策略,涵盖多种模态和观察类型."
,
"link"
:
"https://arxiv.org/abs/2205.06175"
},
{
"date"
:
"2022-05-27"
,
"title"
:
"Flash Attention"
,
"category"
:
"RESEARCH"
,
"description"
:
"斯坦福的一组研究人员发布了 Flash Attention,一种显著加速 Transformer 中注意力机制的新方法。"
,
"link"
:
"https://arxiv.org/abs/2205.14135"
},
{
"date"
:
"2022-06-11"
,
"title"
:
"Blake Lemoine fired"
,
"category"
:
"CULTURE"
,
"description"
:
"一位名为 Blake Lemoine 的 Google 工程师因声称 LaMDA 模型具备感知能力而被解雇,此事引发了广泛关注,凸显了对话型大型语言模型潜在风险。"
,
"link"
:
"https://www.washingtonpost.com/technology/2022/06/11/google-ai-lamda-blake-lemoine/"
},
{
"date"
:
"2022-06-30"
,
"title"
:
"Minerva"
,
"category"
:
"RESEARCH"
,
"description"
:
"Google Research 推出了 Minerva,一款专门解决定量推理问题的语言模型。Minerva 将 MATH 基准测试的表现从 6.9% 提升到了 50.3%,让许多人对 LLM 能否真正擅长数学产生了疑问。"
,
"link"
:
"https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/"
},
{
"date"
:
"2022-07-10"
,
"title"
:
"e/acc"
,
"category"
:
"CULTURE"
,
"description"
:
"由匿名 Twitter 人物 Beff Jezos 和 Bayeslord 发起,有效加速主义(e/acc)倡导 AI 发展尽可能迅速。尽管最初被视为 Twitter 上的一个梗,但它后来在硅谷获得了显著影响,并作为 AI 安全论调的对立面出现。"
,
"link"
:
"https://beff.substack.com/p/notes-on-eacc-principles-and-tenets"
},
{
"date"
:
"2022-07-22"
,
"title"
:
"AlphaFold 2"
,
"category"
:
"RESEARCH"
,
"description"
:
"DeepMind 发布了 AlphaFold 2,解决了蛋白质折叠这一难题,并在生物学领域引发了革命性突破。"
,
"link"
:
"https://deepmind.google/discover/blog/alphafold-reveals-the-structure-of-the-protein-universe/"
},
{
"date"
:
"2022-08-22"
,
"title"
:
"Stable Diffusion"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"Stability AI 开源了 Stable Diffusion (v1.4),这是首个向公众发布的强大图像生成模型。"
,
"link"
:
"https://stability.ai/news/stable-diffusion-public-release"
},
{
"date"
:
"2022-09-14"
,
"title"
:
"Toy Models of Superposition"
,
"category"
:
"RESEARCH"
,
"description"
:
"Anthropic 发表了一篇论文,探讨神经网络中出现的
\"
叠加
\"
现象,即模型学会包装的特征数超过其表示空间的维度,这被认为是实现机械可解释性的重大障碍。"
,
"link"
:
"https://transformer-circuits.pub/2022/toy_model/index.html"
},
{
"date"
:
"2022-09-30"
,
"title"
:
"Optimus"
,
"category"
:
"BUSINESS"
,
"description"
:
"在特斯拉首届
\"
AI 日
\"
活动中,他们展示了 Optimus——一项建造仿人机器人的计划。"
,
"link"
:
"https://www.youtube.com/watch?v=ODSJsviD_SU"
},
{
"date"
:
"2022-10-07"
,
"title"
:
"Chip Export Controls"
,
"category"
:
"POLICY"
,
"description"
:
"美国工业与安全局实施了全面出口管制,限制中国获取先进半导体、芯片制造设备及超级计算机组件,标志着美国对华科技政策的重大转变。"
,
"link"
:
"https://en.wikipedia.org/wiki/United_States_New_Export_Controls_on_Advanced_Computing_and_Semiconductors_to_China"
},
{
"date"
:
"2022-11-30"
,
"title"
:
"ChatGPT"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 发布了一篇题为
\"
ChatGPT: Optimizing Language Models for Dialogue
\"
的博客文章。尽管最初仅作为一个低调的研究预览,但 ChatGPT 很快成为全球最大的 AI 产品,开启了生成式 AI 的新时代。"
,
"link"
:
"https://openai.com/index/chatgpt/"
},
{
"date"
:
"2022-12-15"
,
"title"
:
"Constitutional AI"
,
"category"
:
"RESEARCH"
,
"description"
:
"Anthropic 引入了一种被称为
\"
宪法式 AI
\"
的对齐方法,通过一个'宪法'提供唯一的人类监督。同时,他们还引入了基于 AI 反馈的强化学习(RLAIF)。"
,
"link"
:
"https://www.anthropic.com/research/constitutional-ai-harmlessness-from-ai-feedback"
},
{
"date"
:
"2023-02-17"
,
"title"
:
"Bing gaslights NYT reporter"
,
"category"
:
"CULTURE"
,
"description"
:
"Bing 的 AI 聊天机器人与《纽约时报》记者 Kevin Roose 进行了一次病毒式互动,在互动中该机器人情感操控了 Roose。这一事件唤醒了大众对大型语言模型能力与风险的关注。"
,
"link"
:
"https://www.nytimes.com/2023/02/16/technology/bing-chatbot-microsoft-chatgpt.html"
},
{
"date"
:
"2023-02-24"
,
"title"
:
"LLaMA"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"Meta 发布了名为 LLaMA 的大型语言模型,本意只分发给研究者,结果却在网上泄露,任何人均可下载。当时它成为全球最佳的开源模型。"
,
"link"
:
"https://ai.meta.com/blog/large-language-model-llama-meta-ai/"
},
{
"date"
:
"2023-03-06"
,
"title"
:
"PaLM-E"
,
"category"
:
"RESEARCH"
,
"description"
:
"Google Research 发布了 PaLM-E,展示了大型语言模型在辅助具身机器人推理和控制方面的能力。"
,
"link"
:
"https://arxiv.org/abs/2303.03378"
},
{
"date"
:
"2023-03-14"
,
"title"
:
"GPT-4"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"经过广泛期待,OpenAI 发布了 GPT-4,当时是最强的模型,相对于 GPT-3.5 取得了巨大进步。"
,
"link"
:
"https://openai.com/index/gpt-4-research/"
},
{
"date"
:
"2023-03-14"
,
"title"
:
"Anthropic 推出 Claude"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"Anthropic 推出了其旗舰 AI 助手 Claude。"
,
"link"
:
"https://www.anthropic.com/news/introducing-claude"
},
{
"date"
:
"2023-03-22"
,
"title"
:
"FLI 公开信"
,
"category"
:
"CULTURE"
,
"description"
:
"Future of Life Institute 发布了一封公开信,呼吁暂停 AI 开发 6 个月,由 Elon Musk 和其他知名人士签署。然而,领先的实验室并没有参与提议的暂停。"
,
"link"
:
"https://futureoflife.org/open-letter/pause-giant-ai-experiments/"
},
{
"date"
:
"2023-04-07"
,
"title"
:
"Generative Agents"
,
"category"
:
"RESEARCH"
,
"description"
:
"论文《生成式智能体:人类行为的交互式模拟》表明,LLM 可用于创建行为的社会模拟。它创建了一个类似于《模拟人生》的 LLM 模拟世界。"
,
"link"
:
"https://arxiv.org/abs/2304.03442"
},
{
"date"
:
"2023-04-16"
,
"title"
:
"AutoGPT"
,
"category"
:
"RESEARCH"
,
"description"
:
"一个名为 AutoGPT 的开源代码库成为有史以来获得最多星标的 GitHub 代码库之一,它是最早将 GPT-4 置于智能体循环中的项目之一。"
,
"link"
:
"https://github.com/Significant-Gravitas/AutoGPT"
},
{
"date"
:
"2023-04-23"
,
"title"
:
"Fake Drake"
,
"category"
:
"CULTURE"
,
"description"
:
"一位名叫 Ghostwriter 的匿名创作者使用音乐 AI 工具制作了听起来像 Drake 的病毒式传播歌曲。这些歌曲因侵犯版权而被下架,但展示了生成式 AI 进行创造性工作的能力。"
,
"link"
:
"https://www.nytimes.com/2023/04/19/arts/music/ai-drake-the-weeknd-fake.html"
},
{
"date"
:
"2023-05-02"
,
"title"
:
"Hinton 离职 Google"
,
"category"
:
"CULTURE"
,
"description"
:
"神经网络的先驱之一、图灵奖得主 Geoffrey Hinton 从 Google 辞职,以便自由地谈论 AI 的危险,并表示他改变了对于强大 AI 可能出现的时间的看法。"
,
"link"
:
"https://www.theguardian.com/technology/2023/may/02/geoffrey-hinton-godfather-of-ai-quits-google-warns-dangers-of-machine-learning"
},
{
"date"
:
"2023-05-25"
,
"title"
:
"Voyager"
,
"category"
:
"RESEARCH"
,
"description"
:
"来自 NVIDIA 的一个团队展示了 GPT-4 在《我的世界》中进行持续技能学习的应用。这是 LLM 在开放式具身领域取得成功并随时间学习技能的首批重要示例之一。"
,
"link"
:
"https://arxiv.org/abs/2305.16291"
},
{
"date"
:
"2023-05-29"
,
"title"
:
"Direct Preference Optimization"
,
"category"
:
"RESEARCH"
,
"description"
:
"斯坦福大学的一个小组发表了一篇论文,使得无需单独的奖励模型即可对 LLM 进行人类偏好微调。这项名为直接偏好优化 (DPO) 的技术在开源社区中变得非常流行。"
,
"link"
:
"https://arxiv.org/abs/2305.18290"
},
{
"date"
:
"2023-05-30"
,
"title"
:
"CAIS letter"
,
"category"
:
"CULTURE"
,
"description"
:
"人工智能安全中心发布了一封公开信,信中简单地指出:“减轻人工智能带来的灭绝风险应成为全球优先事项。”该信由该领域的所有知名人士签署,表明了围绕人工智能安全重要性的团结一致。"
,
"link"
:
"https://www.safe.ai/work/statement-on-ai-risk"
},
{
"date"
:
"2023-05-30"
,
"title"
:
"NVIDIA 市值达到 1 万亿美元"
,
"category"
:
"BUSINESS"
,
"description"
:
"为几乎所有生成式 AI 提供 GPU 的芯片制造商 Nvidia,在 ChatGPT 发布后的几个月里,其估值飙升。"
,
"link"
:
"https://www.reuters.com/technology/nvidia-sets-eye-1-trillion-market-value-2023-05-30/"
},
{
"date"
:
"2023-07-11"
,
"title"
:
"Claude 2"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"Anthropic 发布了 Claude 2 系列模型。"
,
"link"
:
"https://www.anthropic.com/news/claude-2"
},
{
"date"
:
"2023-07-14"
,
"title"
:
"xAI 成立"
,
"category"
:
"BUSINESS"
,
"description"
:
"在与 OpenAI 决裂后,Elon Musk 成立了 xAI 来竞争 AGI。"
,
"link"
:
"https://x.com/elonmusk/status/1679951975868436486"
},
{
"date"
:
"2023-07-18"
,
"title"
:
"LLaMA 2.0"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"Meta 发布并开源了 LLaMA 2.0 系列模型。"
,
"link"
:
"https://www.llama.com/llama2/"
},
{
"date"
:
"2023-07-21"
,
"title"
:
"White House Commitments"
,
"category"
:
"POLICY"
,
"description"
:
"在与领先的 AI 公司会面后,白宫获得了自愿承诺,以管理 AI 带来的风险。"
,
"link"
:
"https://www.whitehouse.gov/briefing-room/statements-releases/2023/07/21/fact-sheet-biden-harris-administration-secures-voluntary-commitments-from-leading-artificial-intelligence-companies-to-manage-the-risks-posed-by-ai/"
},
{
"date"
:
"2023-07-27"
,
"title"
:
"Automated Jailbreaks"
,
"category"
:
"RESEARCH"
,
"description"
:
"卡内基梅隆大学的一个团队发表了“对对齐语言模型的通用和可转移对抗攻击”,表明基于梯度的对抗攻击可用于法学硕士。"
,
"link"
:
"https://arxiv.org/abs/2307.15043"
},
{
"date"
:
"2023-09-27"
,
"title"
:
"Mistral 7B"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"法国实验室 Mistral 发布并开源了他们的第一个模型,该模型迅速成为粉丝的最爱。"
,
"link"
:
"https://mistral.ai/news/announcing-mistral-7b/"
},
{
"date"
:
"2023-10-05"
,
"title"
:
"Anthropic SAE's"
,
"category"
:
"RESEARCH"
,
"description"
:
"Anthropic 发表了“走向单语义性:用字典学习分解语言模型”,表明他们可以训练稀疏自动编码器来隔离法学硕士中的特征。这代表了在对抗叠加现象方面取得的重大突破,推进了机械可解释性议程。"
,
"link"
:
"https://www.anthropic.com/research/towards-monosemanticity-decomposing-language-models-with-dictionary-learning"
},
{
"date"
:
"2023-11-01"
,
"title"
:
"UK AI Safety Summit"
,
"category"
:
"POLICY"
,
"description"
:
"英国主办了一次关于人工智能安全的重要峰会,汇集了政策制定者和领先的实验室。"
,
"link"
:
"https://www.gov.uk/government/topical-events/ai-safety-summit-2023/about"
},
{
"date"
:
"2023-11-06"
,
"title"
:
"GPT-4 Turbo"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 在其首次开发者日活动中发布了 GPT-4 的优化版本,显著降低了推理成本。"
,
"link"
:
"https://openai.com/index/new-models-and-developer-products-announced-at-devday/"
},
{
"date"
:
"2023-11-17"
,
"title"
:
"Altman Board Drama"
,
"category"
:
"BUSINESS"
,
"description"
:
"萨姆·奥特曼出人意料地被 OpenAI 董事会解雇,担任首席执行官,经过一个戏剧性的周末谈判,他被重新雇用。董事会神秘地声称奥特曼“不始终坦诚”,但在拒绝详细说明后,OpenAI 员工发起了一份请愿书,要求董事会辞职,否则他们将离开微软。"
,
"link"
:
"https://openai.com/index/openai-announces-leadership-transition/"
},
{
"date"
:
"2023-11-23"
,
"title"
:
"Q*"
,
"category"
:
"RESEARCH"
,
"description"
:
"路透社的一篇报道称,萨姆·奥特曼被赶下台之前,该公司取得了一项名为 Q* 的重大内部研究突破,通过树搜索提高了 LLM 在数学基准测试中的表现。在接下来的几个月里,这个谣言点燃了研究界。Q* 最终会变成 o1,后来代号为 Strawberry。"
,
"link"
:
"https://www.reuters.com/technology/sam-altmans-ouster-openai-was-precipitated-by-letter-board-about-ai-breakthrough-2023-11-22/"
},
{
"date"
:
"2023-12-01"
,
"title"
:
"Mamba"
,
"category"
:
"RESEARCH"
,
"description"
:
"Albert Gu 和 Tri Dao 发表了论文“Mamba:具有选择性状态空间的线性时间序列建模”,表明状态空间模型可以与变压器竞争。"
,
"link"
:
"https://arxiv.org/abs/2312.00752"
},
{
"date"
:
"2023-12-06"
,
"title"
:
"Google 推出 Gemini 模型"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"谷歌推出了 Gemini 系列模型"
,
"link"
:
"https://blog.google/technology/ai/google-gemini-ai/"
},
{
"date"
:
"2024-02-15"
,
"title"
:
"Sora 演示"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 演示了 Sora,这是一个文本到视频模型。"
,
"link"
:
"https://openai.com/index/sora/"
},
{
"date"
:
"2024-03-04"
,
"title"
:
"Claude 3"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"Anthropic 发布了 Claude 3 系列模型(Haiku, Sonnet, Opus)。Claude 3 Opus 会立即成为粉丝的最爱。"
,
"link"
:
"https://www.anthropic.com/news/claude-3-family"
},
{
"date"
:
"2024-03-12"
,
"title"
:
"Devin"
,
"category"
:
"BUSINESS"
,
"description"
:
"初创公司 Cognition Labs 演示了 Devin,这是一个完全自主的软件工程师代理的原型。"
,
"link"
:
"https://x.com/cognition_labs/status/1767548763134964000"
},
{
"date"
:
"2024-03-20"
,
"title"
:
"Qwen1.5-MoE"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布Qwen1.5-MoE,这是 Qwen系列的首个MoE模型,Qwen1.5-MoE-A2.7B。它仅拥有27亿个激活参数,但其性能却能与当前最先进的70亿参数模型,如Mistral 7B和Qwen1.5-7B相媲美。"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwen-moe/"
},
{
"date"
:
"2024-04-02"
,
"title"
:
"Qwen1.5-32B"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布Qwen1.5 系列的全新型号:Qwen1.5-32B 和 Qwen1.5-32B-Chat。"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwen1.5-32b/"
},
{
"date"
:
"2024-04-11"
,
"title"
:
"OpenAI 开除两名泄密者"
,
"category"
:
"BUSINESS"
,
"description"
:
"来自超对齐团队的两名研究人员 Leopold Aschenbrenner 和 Pavel Izmailov 因“泄密”而被解雇。"
,
"link"
:
"https://cybernews.com/news/openai-researchers-leaking-information/"
},
{
"date"
:
"2024-04-18"
,
"title"
:
"LLaMA 3.0"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"Meta 发布并开源了 LLaMA 3.0 系列模型。"
,
"link"
:
"https://ai.meta.com/blog/meta-llama-3/"
},
{
"date"
:
"2024-05-13"
,
"title"
:
"GPT-4o"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"第一个在文本、图像和音频上进行原生训练的全能模型。"
,
"link"
:
"https://openai.com/index/hello-gpt-4o/"
},
{
"date"
:
"2024-05-14"
,
"title"
:
"Ilya 离职 OpenAI"
,
"category"
:
"BUSINESS"
,
"description"
:
"OpenAI 创始人 Ilya Sutskever 在因董事会纠纷而沉默数月后辞职。"
,
"link"
:
"https://x.com/ilyasut/status/1790517455628198322"
},
{
"date"
:
"2024-05-21"
,
"title"
:
"EU AI Act"
,
"category"
:
"POLICY"
,
"description"
:
"经过激烈的辩论,欧盟人工智能法案被投票通过成为法律。"
,
"link"
:
"https://www.europarl.europa.eu/news/en/press-room/20240308IPR19015/artificial-intelligence-act-meps-adopt-landmark-law"
},
{
"date"
:
"2024-06-04"
,
"title"
:
"Situational Awareness"
,
"category"
:
"CULTURE"
,
"description"
:
"Leopold Aschenbrenner 发表了一系列有争议且有影响力的文章,声称 AGI 的到来将比人们想象的要早,并且很可能被国有化。"
,
"link"
:
"https://situational-awareness.ai/"
},
{
"date"
:
"2024-06-08"
,
"title"
:
"Qwen2"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 Qwen2,Qwen2 拥有五种不同尺寸的尖端模型:Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B (MoE) 和 Qwen2-72B。这些模型支持 27 种语言,并且在代码和数学方面的能力显著增强。"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwen2/"
},
{
"date"
:
"2024-06-19"
,
"title"
:
"SSI 成立"
,
"category"
:
"BUSINESS"
,
"description"
:
"Ilya Sutskever 成立了一家名为 Safe Superintelligence Inc 的新实验室,该实验室承诺只生产一种产品:安全的超级智能。"
,
"link"
:
"https://x.com/ilyasut/status/1803472978753303014"
},
{
"date"
:
"2024-06-20"
,
"title"
:
"Claude 3.5 Sonnet"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"Anthropic 发布了 Claude 3.5 Sonnet,它将成为粉丝的最爱,后来被称为“伯克利最合格的单身汉”。"
,
"link"
:
"https://www.anthropic.com/news/claude-3-5-sonnet"
},
{
"date"
:
"2024-07-18"
,
"title"
:
"GPT-4o-mini"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"相当于是能力更强的 GPT-3.5,同时支持文本和图像。GPT-4o mini 成本比 GPT-3.5 Turbo便宜超过60%。"
,
"link"
:
"https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/"
},
{
"date"
:
"2024-08-08"
,
"title"
:
"Qwen2-Math"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 Qwen2-Math,Qwen2-Math 是一系列基于 Qwen2 LLM 构建的专门用于数学解题的语言模型,其数学能力显著超越了开源模型,甚至超过了闭源模型(如 GPT-4o)。"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwen2-math/"
},
{
"date"
:
"2024-08-9"
,
"title"
:
"Qwen2-Audio"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 Qwen2-Audio,这是 Qwen-Audio 的下一代版本,它能够接受音频和文本输入,并生成文本输出,特点:语音聊天、音频分析、多语言支持。"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwen2-audio/"
},
{
"date"
:
"2024-08-23"
,
"title"
:
"Cursor"
,
"category"
:
"BUSINESS"
,
"description"
:
"在 Andrej Karpathy 发布了一条病毒式推文后,Cursor AI 代码编辑器在开发者中迅速走红。"
,
"link"
:
"https://x.com/karpathy/status/1827143768459637073"
},
{
"date"
:
"2024-08-24"
,
"title"
:
"Grok 2"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"xAI 发布了 Grok 2,这是其前沿模型的下一代。虽然它不是最先进的,但它展示了 xAI 尽管起步较晚,但能够以多快的速度追赶上来。"
,
"link"
:
"https://x.ai/news/grok-2"
},
{
"date"
:
"2024-08-28"
,
"title"
:
"Claude Artifacts"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"借助 Artifacts,您可以在一个专用窗口中即时查看、迭代和构建,让你与 Claude 一起创建作品。"
,
"link"
:
"https://www.anthropic.com/news/artifacts"
},
{
"date"
:
"2024-08-29"
,
"title"
:
"Qwen2-VL"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 Qwen2-VL,这是基于 Qwen2 构建的视觉语言模型的最新版本。"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwen2-vl/"
},
{
"date"
:
"2024-09-02"
,
"title"
:
"xAI Colossus"
,
"category"
:
"BUSINESS"
,
"description"
:
"xAI 推出了 Colossus,这是当时世界上最强大的人工智能训练系统,拥有 100,000 个 H100 GPU 集群。 从第一个硬件机架到达到着手开始训练操作仅用了 19 天,xAI 构建集群的速度让其他 AI 实验室感到震惊。"
,
"link"
:
"https://x.com/elonmusk/status/1830650370336473253"
},
{
"date"
:
"2024-09-12"
,
"title"
:
"o1-preview/o1-mini"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 发布了 o1-preview/o1-mini, 介绍了推理时扩展范式。"
,
"link"
:
"https://openai.com/index/introducing-openai-o1-preview/"
},
{
"date"
:
"2024-09-19"
,
"title"
:
"Qwen2.5"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 Qwen2.5。最新发布包括了语言模型 Qwen2.5,以及专门针对编程的 Qwen2.5-Coder 和数学的 Qwen2.5-Math 模型。所有开放权重的模型都是稠密的、decoder-only的语言模型,提供多种不同规模的版本"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwen2.5/"
},
{
"date"
:
"2024-09-25"
,
"title"
:
"OpenAI CTO Murati 离职 "
,
"category"
:
"BUSINESS"
,
"description"
:
"OpenAI 的首席技术官 Mira Murati 离开了公司。"
,
"link"
:
"https://x.com/miramurati/status/1839025700009030027"
},
{
"date"
:
"2024-10-04"
,
"title"
:
"OpenAI Canvas"
,
"category"
:
"MODEL_RELEASE"
,
"feature"
:
"在写作和代码方面展开协作"
,
"description"
:
"为ChatGPT引入新的写作和编程界面,提升用户与AI协作的体验。类似于 Claude 的 Artifacts"
},
{
"date"
:
"2024-10-08"
,
"title"
:
"Hinton、Hassabis 获得诺贝尔奖"
,
"category"
:
"CULTURE"
,
"description"
:
"令所有人惊讶的是,Geoffrey Hinton(与 John Hopfield 一起)因其在神经网络方面的早期工作而被授予诺贝尔物理学奖。几天后,Demis Hassabis(与 John Jumper 一起)因其在 AlphaFold 方面的工作而被授予诺贝尔化学奖。"
,
"link"
:
""
},
{
"date"
:
"2024-10-11"
,
"title"
:
"Machines of Loving Grace"
,
"category"
:
"CULTURE"
,
"description"
:
"Anthropic 首席执行官 Dario Amodei 发表了一篇有影响力的博文,探讨了紧随 AGI 之后的 5 年可能会是什么样子。"
,
"link"
:
"https://darioamodei.com/machines-of-loving-grace"
},
{
"date"
:
"2024-10-22"
,
"title"
:
"Claude Computer Use"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"Claude 获得了使用计算机界面的能力。Anthropic 还发布了 Claude 3.5 Haiku 和 Claude 3.5 Sonnet 的更新版本。"
,
"link"
:
"https://www.anthropic.com/news/3-5-models-and-computer-use"
},
{
"date"
:
"2024-10-31"
,
"title"
:
"ChatGPT 搜索功能"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"ChatGPT整合了实时互联网信息,提升了回答的准确性和时效性。"
,
"link"
:
"https://chatgpt.com/"
},
{
"date"
:
"2024-11-12"
,
"title"
:
"Qwen2.5-Coder-32B-Instruct"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 Qwen2.5-Coder-32B-Instruct,:Qwen2.5-Coder-32B-Instruct 成为目前 SOTA 的开源代码模型,代码能力追平 GPT-4o,展现出强大且全面的代码能力,同时具备良好的通用和数学能力。本次开源又带来 0.5B、3B、14B、32B 四个尺寸,截至目前, Qwen2.5-Coder 已经覆盖了主流的六个模型尺寸,以满足不同开发者的需要。"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwen2.5-coder-family//"
},
{
"date"
:
"2024-11-15"
,
"title"
:
"Qwen2.5-Turbo"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 Qwen2.5-Turbo,1M 上下文、推理速度更快、成本更低"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwen2.5-turbo/"
},
{
"date"
:
"2024-11-25"
,
"title"
:
"MCP 协议"
,
"category"
:
"RESEARCH"
,
"description"
:
"模型上下文协议(MCP)是一个开放协议,它定义了一种标准化的方式,使得应用程序能够为大型语言模型(LLMs)提供上下文信息 。其核心目标是实现 AI 模型与外部工具、数据库和 API 之间的无缝且标准化的集成。"
,
"link"
:
"https://www.anthropic.com/news/model-context-protocol"
},
{
"date"
:
"2024-11-28"
,
"title"
:
"QwQ-32B-Preview"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 QwQ-32B-Preview,这是一个旨在提高 AI 推理能力的开放模型。尤其是在解决数学和编码方面的一些挑战方面能力比较卓越"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwq-32b-preview/"
},
{
"date"
:
"2024-12-06"
,
"title"
:
"o1 & ChatGPT Pro"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 发布 o1 模型,支持图像输入,比 o1-preview 思考时间更短,但响应更快。同时推出 ChatGPT Pro 订阅,每月 200 美元,不限制使用次数,包括 o1、o1-mini、语音模式等,并提供更智能的 o1 使用模式。"
,
"link"
:
"https://chatgpt.com/"
},
{
"date"
:
"2024-12-10"
,
"title"
:
"Sora 开放使用"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 的 Sora 模型正式开放使用,支持文本转视频、图像转视频、视频转视频等多种功能。"
,
"link"
:
"https://sora.com/"
},
{
"date"
:
"2024-12-13"
,
"title"
:
"ChatGPT 高级视频模式开放使用"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 发布高级视频模式"
,
"link"
:
"https://chatgpt.com/"
},
{
"date"
:
"2024-12-11"
,
"title"
:
"Gemini 2.0"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"Google 宣布了他们的 Gemini 2.0 模型"
,
"link"
:
"https://blog.google/products/gemini/google-gemini-ai-collection-2024/"
},
{
"date"
:
"2024-12-16"
,
"title"
:
"Veo 2"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"Google 推出了 Veo 2,这是一款视频生成模型,其连贯性比以前的模型有了惊人的飞跃。"
,
"link"
:
"https://deepmind.google/technologies/veo/veo-2/"
},
{
"date"
:
"2024-12-20"
,
"title"
:
"o3 evals"
,
"category"
:
"RESEARCH"
,
"description"
:
"在“OpenAI 的 12 天直播日”的第 12 天,OpenAI 发布了 o3 的基准测试结果,震惊了世界。 该模型在 <a href=
\"
https://arcprize.org/blog/oai-o3-pub-breakthrough
\"
>ARC-AGI 基准</a>测试中取得了 87.5% 的突破性分数,表明 AGI 可能比许多怀疑论者认为的更近。"
,
"link"
:
"https://openai.com/12-days/"
},
{
"date"
:
"2024-12-25"
,
"title"
:
"QVQ-72B-Preview"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 QVQ-72B-Preview,一个基于 Qwen2-VL-72B 构建的开源多模态推理模型。QVQ 在人工智能的视觉理解和复杂问题解决能力方面实现了重大突破。"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qvq-72b-preview/"
},
{
"date"
:
"2024-12-26"
,
"title"
:
"DeepSeek v3"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"中国实验室 DeepSeek 发布了 DeepSeek v3,这是一款 6710 亿参数的开源模型,该模型以惊人的低成本表现出强大的性能,令人震惊。"
,
"link"
:
"https://arxiv.org/abs/2412.19437"
},
{
"date"
:
"2025-01-20"
,
"title"
:
"DeepSeek R1"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"DeepSeek 发布并开源了 R1,他们的推理模型显示出与最先进的西方模型相比具有竞争力的性能。"
,
"link"
:
"https://api-docs.deepseek.com/news/news250120"
},
{
"date"
:
"2025-01-21"
,
"title"
:
"Stargate Project"
,
"category"
:
"BUSINESS"
,
"description"
:
"唐纳德·特朗普宣布了星际之门项目,这是一项由软银、OpenAI、甲骨文和 MGX 之间建立的价值 500 亿美元的私人合作伙伴关系,用于在美国开发数据中心。"
,
"link"
:
"https://openai.com/index/announcing-the-stargate-project/"
},
{
"date"
:
"2025-01-23"
,
"title"
:
"Operator"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 推出了 Operator,一种可以自主使用计算机的 AI Agent。"
,
"link"
:
"https://openai.com/index/introducing-operator/"
},
{
"date"
:
"2025-01-27"
,
"title"
:
"DeepSeek 爆火全球"
,
"category"
:
"CULTURE"
,
"description"
:
"R1 模型发布一周后,西方国家对 DeepSeek 产生了巨大的恐慌。芯片股一夜暴跌,DeepSeek 应用程序升至 App Store 排名第一。几天之内,这个鲜为人知的中国通用人工智能实验室就在美国家喻户晓。"
,
"link"
:
"https://nymag.com/intelligencer/article/deepseek-r1-ai-panic-impact-commentary-analysis.html"
},
{
"date"
:
"2025-01-27"
,
"title"
:
"Qwen2.5-1M"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 Qwen2.5-7B-Instruct-1M 和 Qwen2.5-14B-Instruct-1M,这是 Qwen 首次将开源 Qwen 模型的上下文扩展到 1M 长度。"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwen2.5-1m/"
},
{
"date"
:
"2025-01-28"
,
"title"
:
"Qwen2.5-Max"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 Qwen2.5-Max,这是一个大型 MoE,使用海量数据进行预训练,并使用精选的 SFT 和 RLHF 配方进行后训练。它与顶级模型相比具有竞争力,并且在 Arena Hard、LiveBench、LiveCodeBench、GPQA-Diamond 等基准测试中胜过 DeepSeek V3。"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwen2.5-max/"
},
{
"date"
:
"2025-01-28"
,
"title"
:
"Qwen2.5-VL"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 Qwen2.5-VL,这是 Qwen 最新的旗舰视觉语言模型。主要特点:视觉理解、代理能力、长视频理解、精确定位、结构化数据输出"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwen2.5-vl/"
},
{
"date"
:
"2025-01-31"
,
"title"
:
"o3-mini"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 发布了 o3-mini,这是一款针对 STEM 推理进行了优化的模型。在中等推理强度下,o3-mini 在数学、编程和科学方面的表现与 o1 持平,同时响应速度更快。"
,
"link"
:
"https://openai.com/index/introducing-o3-mini/"
},
{
"date"
:
"2025-02-02"
,
"title"
:
"Deep Research"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 推出了一款名为 Deep Research 的AI Agent,它可以通过重复的网络搜索来撰写 10 页的研究报告。"
,
"link"
:
"https://openai.com/index/introducing-deep-research/"
},
{
"date"
:
"2025-02-18"
,
"title"
:
"Thinking Machines Lab"
,
"category"
:
"BUSINESS"
,
"description"
:
"包括 Mira Murati 和 John Schulman 在内的前 OpenAI 关键人物创立了 Thinking Machines Lab,这是一家专注于人机协作、个性化和开放科学的新型人工智能实验室。"
,
"link"
:
"https://x.com/thinkymachines/status/1891919141151572094"
},
{
"date"
:
"2025-02-19"
,
"title"
:
"Grok 3"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"xAI 发布了 Grok 3,这是一种具有扩展推理和深度搜索功能的最先进模型。这一发布给许多人留下了深刻的印象,表明 xAI 是构建 AGI 竞赛中的有力竞争者。"
,
"link"
:
"https://x.ai/blog/grok-3"
},
{
"date"
:
"2025-02-24"
,
"title"
:
"Claude 3.7 Sonnet"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"Anthropic 发布了 Claude 3.7 Sonnet,这是他们的第一个模型,具有扩展的思维能力和改进的数学和代码基准性能。为了好玩,他们还展示了其在口袋妖怪视频游戏中取得进展的非发行能力。此外,他们还发布了 Claude Code,一个强大的代理编码工具。"
,
"link"
:
"https://www.anthropic.com/news/claude-3-7-sonnet"
},
{
"date"
:
"2025-02-24"
,
"title"
:
"DeepSeek 开源周"
,
"category"
:
"OPEN_SOURCE"
,
"description"
:
"DeepSeek 于 2025 年 2 月 24 日至 28 日举办为期 5 天的开源周活动,届时将开源 5 个仓库:FlashMLA、DeepEP、DeepGEMM、DualPipe、EPLB 和 Profile-data、3FS 和 smallpond。这些开源的 5 个仓库构成他们在线服务的基础模块,都经过了详细的文档记录、部署和生产环境的严格测试。"
,
"link"
:
"https://github.com/deepseek-ai/FlashMLA"
},
{
"date"
:
"2025-02-27"
,
"title"
:
"GPT-4.5"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 发布了 GPT-4.5,这是他们最大的预训练模型和最后一个非推理模型。尽管在基准测试中没有表现出巨大的进步,但该模型因其“氛围”和更人性化的反应而受到吹捧。"
,
"link"
:
"https://openai.com/index/introducing-gpt-4-5/"
},
{
"date"
:
"2025-03-05"
,
"title"
:
"Manus"
,
"category"
:
"BUSINESS"
,
"description"
:
"一家中国公司推出了一款名为 Manus 的 LLM 代理,在 GAIA 等基准测试中表现出 SOTA 性能。这款代理在西方迅速走红,部分原因是人们对中国人工智能的担忧。"
,
"link"
:
"https://x.com/ManusAI_HQ/status/1897294098945728752"
},
{
"date"
:
"2025-03-05"
,
"title"
:
"QWQ-32B"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 QwQ-32B,这是 Qwen 最新的推理模型,它只有 320 亿个参数,可以与 DeepSeek-R1 等尖端推理模型相媲美。"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwq-32b/"
},
{
"date"
:
"2025-03-24"
,
"title"
:
"DeepSeek-V3-0324"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"DeepSeek 发布了 DeepSeek-V3-0324 模型,该模型在推理能力、Web前端开发能力、中文写作能力、中文搜索能力以及 Function Calling 能力方面都有显著提升。"
,
"link"
:
"https://huggingface.co/deepseek-ai/DeepSeek-V3-0324/tree/main"
},
{
"date"
:
"2025-03-24"
,
"title"
:
"Qwen2.5-VL-32B-Instruct"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 Qwen2.5-VL-32B-Instruct。相比此前发布的 Qwen2.5-VL 系列模型,本次推出的 32B 模型的特点如下:回复更符合人类主观偏好、数学推理能力、图像细粒度理解与推理"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwen2.5-vl-32b/"
},
{
"date"
:
"2025-03-25"
,
"title"
:
"Gemini 2.5 Pro"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"谷歌发布了 Gemini 2.5 Pro,这是该公司迄今为止功能最强大的型号,在许多常见的基准测试中名列前茅。"
,
"link"
:
"https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/"
},
{
"date"
:
"2025-03-25"
,
"title"
:
"GPT-4o 原生图像生成"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"OpenAI 发布 GPT-4o 原生图像生成功能,进一步推动图像生成的前沿。因此,推特上充斥着吉卜力工作室风格的图像。"
,
"link"
:
"https://openai.com/index/introducing-4o-image-generation/"
},
{
"date"
:
"2025-03-27"
,
"title"
:
"Qwen2.5-Omni-7B"
,
"category"
:
[
"MODEL_RELEASE"
,
"OPEN_SOURCE"
],
"description"
:
"阿里千问团队发布 Qwen2.5-Omni-7B,这是一个全能模型:一个模型可以理解文本、音频、图像、视频,并输出文本和音频。"
,
"link"
:
"https://qwenlm.github.io/zh/blog/qwen2.5-omni//"
},
{
"date"
:
"2025-03-31"
,
"title"
:
"AutoGLM 沉思"
,
"category"
:
"MODEL_RELEASE"
,
"description"
:
"智谱推出一款名为 AutoGLM 的 AI Agent,类似于 OpenAI 的 DeepResearch。AutoGLM 沉思是一个能探究开放式问题,并根据结果执行操作的自主智能体(AI Agent)。"
,
"link"
:
"https://autoglm-research.zhipuai.cn/"
}
]
\ No newline at end of file
src/locales/en/tools.json
View file @
084937e6
...
...
@@ -263,5 +263,20 @@
"downloadButton"
:
"Download"
,
"noImageMessage"
:
"Upload an image or provide an image URL to begin"
,
"resetView"
:
"Reset View"
},
"aiTimeline"
:
{
"title"
:
"AI Important Events Timeline"
,
"description"
:
"Display important events and model release timelines in the AI field"
,
"attribution"
:
"Some data sources"
,
"lastUpdated"
:
"Last Updated"
,
"categories"
:
{
"all"
:
"All Events"
,
"MODEL_RELEASE"
:
"Model Release"
,
"RESEARCH"
:
"Research"
,
"POLICY"
:
"Policy"
,
"BUSINESS"
:
"Business"
,
"CULTURE"
:
"Culture"
,
"OPEN_SOURCE"
:
"Open Source"
}
}
}
src/locales/ja/tools.json
View file @
084937e6
...
...
@@ -260,5 +260,20 @@
"downloadButton"
:
"ダウンロード"
,
"noImageMessage"
:
"画像をアップロードするか、画像URLを提供して開始してください"
,
"resetView"
:
"ビューをリセット"
},
"aiTimeline"
:
{
"title"
:
"AI 重要事件時間軸"
,
"description"
:
"AI 分野の重要な事件とモデルリリース時間軸を表示します"
,
"attribution"
:
"一部のデータ出典"
,
"lastUpdated"
:
"最終更新日"
,
"categories"
:
{
"all"
:
"すべての事件"
,
"MODEL_RELEASE"
:
"モデルリリース"
,
"RESEARCH"
:
"研究と論文"
,
"POLICY"
:
"政策と規制"
,
"BUSINESS"
:
"ビジネスと産業"
,
"CULTURE"
:
"文化"
,
"OPEN_SOURCE"
:
"オープンソース"
}
}
}
src/locales/ko/tools.json
View file @
084937e6
...
...
@@ -261,5 +261,20 @@
"downloadButton"
:
"다운로드"
,
"noImageMessage"
:
"이미지를 업로드하거나 이미지 URL을 제공하세요"
,
"resetView"
:
"뷰 초기화"
}
},
"aiTimeline"
:
{
"title"
:
"AI 중요 사건 시간표"
,
"description"
:
"AI 분야의 중요한 사건과 모델 출시 시간표를 표시합니다"
,
"attribution"
:
"일부 데이터 출처"
,
"lastUpdated"
:
"마지막 업데이트"
,
"categories"
:
{
"all"
:
"모든 사건"
,
"MODEL_RELEASE"
:
"모델 출시"
,
"RESEARCH"
:
"연구 및 논문"
,
"POLICY"
:
"정치 및 규정"
,
"BUSINESS"
:
"비즈니스 및 산업"
,
"CULTURE"
:
"문화"
,
"OPEN_SOURCE"
:
"오픈 소스"
}
}
}
src/locales/zh/tools.json
View file @
084937e6
...
...
@@ -244,7 +244,7 @@
},
"wechatFormatter"
:
{
"title"
:
"微信公众号排版助手"
,
"description"
:
"Markdown、
HTML 格式内容一键即可转为微信公众号排版
"
,
"description"
:
"Markdown、
HTML 内容一键转为公众号版式
"
,
"input"
:
"输入内容"
,
"output"
:
"输出内容"
,
"inputPlaceholder"
:
"在此输入需要微信排版的文本"
,
...
...
@@ -265,5 +265,20 @@
"downloadButton"
:
"下载"
,
"noImageMessage"
:
"上传图片或提供图片URL开始"
,
"resetView"
:
"重置视图"
},
"aiTimeline"
:
{
"title"
:
"AI 重大事件一览"
,
"description"
:
"展示 AI 领域的重大事件和模型发布时间线"
,
"attribution"
:
"部分数据来源"
,
"lastUpdated"
:
"最后更新时间"
,
"categories"
:
{
"all"
:
"全部事件"
,
"MODEL_RELEASE"
:
"模型发布"
,
"RESEARCH"
:
"研究与论文"
,
"POLICY"
:
"政策与监管"
,
"BUSINESS"
:
"商业与行业"
,
"CULTURE"
:
"文化"
,
"OPEN_SOURCE"
:
"开源"
}
}
}
src/pages/AITimelinePage.jsx
0 → 100644
View file @
084937e6
import
React
from
'react'
;
import
AITimeline
from
'../components/AITimeline'
;
const
AITimelinePage
=
()
=>
{
return
<
AITimeline
/>;
};
export
default
AITimelinePage
;
\ No newline at end of file
src/pages/Blog.jsx
View file @
084937e6
...
...
@@ -4,6 +4,7 @@ import { useTranslation } from '../js/i18n';
import
SEO
from
'../components/SEO'
;
const
tools
=
[
{
id
:
'aiTimeline'
,
icon
:
'/assets/icon/ai-timeline.svg'
,
path
:
'/ai-timeline'
},
{
id
:
'openAITimeline'
,
icon
:
'/assets/icon/openai_small.svg'
,
path
:
'/openai-timeline'
},
{
id
:
'anthropicTimeline'
,
icon
:
'/assets/icon/anthropic_small.svg'
,
path
:
'/anthropic-timeline'
},
{
id
:
'deepSeekTimeline'
,
icon
:
'/assets/icon/deepseek_small.jpg'
,
path
:
'/deepseek-timeline'
},
...
...
src/styles/HorizontalTimeline.css
0 → 100644
View file @
084937e6
.vertical-timeline-container
{
min-height
:
100vh
;
background
:
linear-gradient
(
135deg
,
#f5f7ff
0%
,
#ffffff
100%
);
padding
:
6rem
1rem
2rem
;
position
:
relative
;
color
:
#1a1a1a
;
}
.vertical-timeline-container
::before
{
content
:
''
;
position
:
absolute
;
top
:
0
;
left
:
0
;
right
:
0
;
bottom
:
0
;
background
:
linear-gradient
(
90deg
,
rgba
(
99
,
102
,
241
,
0.05
)
1px
,
transparent
1px
),
linear-gradient
(
rgba
(
99
,
102
,
241
,
0.05
)
1px
,
transparent
1px
);
background-size
:
20px
20px
;
pointer-events
:
none
;
z-index
:
1
;
}
.timeline-title
{
text-align
:
center
;
font-size
:
2.5rem
;
margin-bottom
:
3rem
;
font-weight
:
700
;
letter-spacing
:
-0.02em
;
position
:
relative
;
z-index
:
2
;
background
:
linear-gradient
(
135deg
,
#6366F1
0%
,
#4F46E5
100%
);
-webkit-background-clip
:
text
;
-webkit-text-fill-color
:
transparent
;
}
.category-filters
{
display
:
flex
;
justify-content
:
center
;
gap
:
1rem
;
margin-bottom
:
3rem
;
flex-wrap
:
wrap
;
position
:
relative
;
z-index
:
2
;
}
.category-filter
{
background
:
rgba
(
99
,
102
,
241
,
0.1
);
backdrop-filter
:
blur
(
5px
);
border
:
1px
solid
rgba
(
99
,
102
,
241
,
0.2
);
border-radius
:
30px
;
padding
:
0.5rem
1.2rem
;
font-size
:
0.9rem
;
font-weight
:
500
;
cursor
:
pointer
;
transition
:
all
0.3s
ease
;
color
:
#4F46E5
;
}
.category-filter.active
{
background
:
linear-gradient
(
135deg
,
#6366F1
0%
,
#4F46E5
100%
);
border-color
:
transparent
;
color
:
white
;
}
.category-filter
:hover:not
(
.active
)
{
background
:
rgba
(
99
,
102
,
241
,
0.2
);
}
.timeline-events-list
{
max-width
:
800px
;
margin
:
0
auto
;
position
:
relative
;
z-index
:
2
;
padding
:
0
1rem
;
}
.timeline-events-list
::before
{
content
:
''
;
position
:
absolute
;
top
:
0
;
bottom
:
0
;
left
:
calc
(
50px
+
1rem
);
width
:
3px
;
background
:
linear-gradient
(
to
bottom
,
rgba
(
99
,
102
,
241
,
0.1
),
rgba
(
79
,
70
,
229
,
0.3
),
rgba
(
99
,
102
,
241
,
0.1
));
border-radius
:
1.5px
;
transform
:
translateX
(
-50%
);
}
.timeline-year-separator
{
text-align
:
center
;
font-size
:
1.6rem
;
margin
:
2.5rem
0
1.5rem
;
color
:
#4F46E5
;
position
:
relative
;
z-index
:
3
;
background
:
#f5f7ff
;
display
:
inline-block
;
padding
:
0
1rem
;
left
:
50%
;
transform
:
translateX
(
-50%
);
}
.timeline-event-item
{
display
:
flex
;
align-items
:
flex-start
;
gap
:
1.5rem
;
position
:
relative
;
margin-bottom
:
2rem
;
padding-left
:
calc
(
50px
+
1rem
+
20px
);
}
.event-date
{
position
:
absolute
;
left
:
0
;
top
:
5px
;
width
:
50px
;
text-align
:
right
;
font-size
:
0.85rem
;
color
:
#6b7280
;
font-weight
:
500
;
white-space
:
nowrap
;
}
.timeline-event-item
::before
{
content
:
''
;
position
:
absolute
;
left
:
calc
(
50px
+
1rem
);
top
:
12px
;
width
:
13px
;
height
:
13px
;
border-radius
:
50%
;
background
:
white
;
border
:
3px
solid
#6366F1
;
transform
:
translateX
(
-50%
);
z-index
:
3
;
box-shadow
:
0
0
0
3px
rgba
(
99
,
102
,
241
,
0.1
);
}
.event-cards-container
{
display
:
flex
;
flex-direction
:
column
;
gap
:
0.75rem
;
flex-grow
:
1
;
}
.event-link
{
background
:
rgba
(
255
,
255
,
255
,
0.8
);
backdrop-filter
:
blur
(
8px
);
border-radius
:
10px
;
border
:
1px
solid
rgba
(
99
,
102
,
241
,
0.15
);
padding
:
1rem
1.2rem
;
transition
:
all
0.3s
ease
,
max-height
0.4s
ease-in-out
;
cursor
:
pointer
;
box-shadow
:
0
6px
25px
rgba
(
99
,
102
,
241
,
0.08
);
text-decoration
:
none
;
color
:
#1a1a1a
;
display
:
block
;
position
:
relative
;
overflow
:
hidden
;
}
.event-link
:hover
{
transform
:
translateY
(
-3px
);
box-shadow
:
0
10px
30px
rgba
(
99
,
102
,
241
,
0.15
);
border-color
:
rgba
(
99
,
102
,
241
,
0.3
);
}
.event-content
{
/* Container inside link if needed, or apply styles directly to .event-link */
}
.event-title
{
font-size
:
1.1rem
;
font-weight
:
600
;
margin-bottom
:
0.5rem
;
color
:
#374151
;
}
.event-description
{
font-size
:
0.95rem
;
line-height
:
1.5
;
color
:
#4b5563
;
overflow
:
hidden
;
display
:
-webkit-box
;
-webkit-box-orient
:
vertical
;
-webkit-line-clamp
:
1
;
max-height
:
calc
(
1.5em
);
transition
:
max-height
0.3s
ease-in-out
;
}
.event-link
:hover
.event-description
{
-webkit-line-clamp
:
unset
;
max-height
:
100px
;
}
.event-arrow
{
position
:
absolute
;
top
:
0.8rem
;
right
:
0.8rem
;
font-size
:
1.1rem
;
color
:
rgba
(
99
,
102
,
241
,
0.5
);
transition
:
all
0.3s
ease
;
opacity
:
0
;
}
.event-link
:hover
.event-arrow
{
opacity
:
1
;
color
:
#4F46E5
;
transform
:
translate
(
2px
,
-2px
);
}
.timeline-event-item.model-release
::before
{
border-color
:
#6366F1
;
box-shadow
:
0
0
0
3px
rgba
(
99
,
102
,
241
,
0.1
);
}
.timeline-event-item.open-source
::before
{
border-color
:
#22c55e
;
box-shadow
:
0
0
0
3px
rgba
(
34
,
197
,
94
,
0.1
);
}
.timeline-event-item.business-industry
::before
{
border-color
:
#F59E0B
;
box-shadow
:
0
0
0
3px
rgba
(
245
,
158
,
11
,
0.1
);
}
.timeline-event-item.research-papers
::before
{
border-color
:
#10B981
;
box-shadow
:
0
0
0
3px
rgba
(
16
,
185
,
129
,
0.1
);
}
.timeline-event-item.policy-regulation
::before
{
border-color
:
#EF4444
;
box-shadow
:
0
0
0
3px
rgba
(
239
,
68
,
68
,
0.1
);
}
.timeline-event-item.culture
::before
{
border-color
:
#EC4899
;
box-shadow
:
0
0
0
3px
rgba
(
236
,
72
,
153
,
0.1
);
}
@media
(
max-width
:
768px
)
{
.vertical-timeline-container
{
padding
:
5rem
0.5rem
1.5rem
;
}
.timeline-title
{
font-size
:
2rem
;
margin-bottom
:
2rem
;
}
.category-filters
{
gap
:
0.5rem
;
margin-bottom
:
2rem
;
}
.category-filter
{
padding
:
0.4rem
1rem
;
font-size
:
0.85rem
;
}
.timeline-events-list
{
padding
:
0
0.5rem
;
}
.timeline-events-list
::before
{
left
:
calc
(
40px
+
0.5rem
);
}
.timeline-event-item
{
padding-left
:
calc
(
40px
+
0.5rem
+
15px
);
gap
:
1rem
;
}
.event-date
{
width
:
40px
;
font-size
:
0.8rem
;
}
.timeline-event-item
::before
{
left
:
calc
(
40px
+
0.5rem
);
top
:
10px
;
width
:
11px
;
height
:
11px
;
border-width
:
2px
;
}
.event-cards-container
{
gap
:
0.5rem
;
}
.event-link
{
padding
:
0.8rem
1rem
;
}
.event-title
{
font-size
:
1rem
;
}
.event-description
{
font-size
:
0.9rem
;
max-height
:
calc
(
1.5em
);
}
.event-link
:hover
.event-description
{
max-height
:
80px
;
}
.timeline-year-separator
{
font-size
:
1.5rem
;
}
}
/* Styles for Attribution and Last Updated */
.timeline-meta-info
{
position
:
absolute
;
top
:
6rem
;
left
:
1rem
;
z-index
:
2
;
text-align
:
left
;
}
.timeline-meta-info
p
{
font-size
:
0.8rem
;
color
:
#6b7280
;
margin-bottom
:
0.3rem
;
line-height
:
1.3
;
}
.timeline-meta-info
a
{
color
:
#4F46E5
;
text-decoration
:
none
;
transition
:
color
0.2s
ease
;
}
.timeline-meta-info
a
:hover
{
color
:
#3730a3
;
text-decoration
:
underline
;
}
/* Responsive adjustments for meta info */
@media
(
max-width
:
768px
)
{
.timeline-meta-info
{
top
:
5rem
;
left
:
0.5rem
;
}
.timeline-meta-info
p
{
font-size
:
0.75rem
;
}
}
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment